焊缝金属奥氏体分解温度预测研究

Prediction of Austenite Decomposition Temperature in Weld Metal

  • 摘要: 根据182组实测焊缝金属奥氏体分解温度值,分别采用线性回归方法、非线性回归方法和人工神经网络技术建立了奥氏体分解温度的预测公式或模型。结果表明:线性回归公式难以准确体现各因素与奥氏体分解温度之间的关系,引入Mo指数和ln(t8/3)函数,预测精度有所提高;考虑了各因素之间交互作用的神经网络模型预测精度高于线性和非线性回归公式的,更适合于奥氏体分解温度预测研究。

     

    Abstract: Based on 182 experimental data of austenite decomposition temperature,the formulas or models of austenite decomposition temperature are established by linear regression method,nonlinear regression method and artificial neural network respectively.The results show that linear regression formula cannot exactly express the relationship between factors and austenite decomposition temperature,with molybdenum exponential and ln(t8/3) function were introduced,precision of the formula increased; the neural network model takes the interaction of factors into account,which predict more accurately than by linear and nonlinear regression formulas,and is more applicable for the research of predicting austenite decomposition temperature.

     

/

返回文章
返回