Study on Modification of Nano-SiO2 by Silane Coupling Agent with Different Carbon Chain Lengths
-
摘要: 使用不同碳链长度的硅烷偶联剂(甲基三甲氧基硅烷、丙基三甲氧基硅烷、辛基三甲氧基硅烷、十六烷基三甲氧基硅烷)分别对纳米SiO2进行改性。采用FTIR、XPS、XRD、TGA等表征方法研究了SiO2粒子改性前后的化学结构和接枝率;采用激光粒度测试和TEM研究了纳米SiO2颗粒的粒径分布和微观形貌;采用沉降实验和接触角观察了纳米SiO2粒子的水中分散性状态及其亲疏水性能。结果表明,硅烷偶联剂成功接枝在了纳米SiO2颗粒表面。随着硅烷偶联剂碳链长度的增加,改性后SiO2平均粒径呈现先减小后增大的趋势,团聚现象减弱。经十六烷基三甲氧基硅烷改性的纳米SiO2颗粒接触角从11.7°提高至108.2°,由亲水性转变为疏水性。Abstract: Nano-SiO2 is modified by silane coupling agents with different carbon chain lengths (methyltrimethoxysilane, propyltrimethoxysilane, octyltrimethoxysilane and cetyltrimethoxysilane). The chemical structure and grafting efficiency of the nano-SiO2 before and after modification are studied by FTIR, XPS, XRD and TGA. The particle size distribution and micro morphology of nano-SiO2 particles are studied by laser particle size measurement and TEM. The dispersion and hydrophilic and hydrophobic properties of the nano-SiO2 particles in water are observed by the sedimentation experiment and contact angle. The results show that the silane coupling agents are grafted on the surface of nano-SiO2 particles. With the increase of carbon chain length of the silane coupling agent, the average particle size of the modified nano-SiO2 first decreases and then rises, and the agglomeration phenomenon weakens. The contact angle of the nano-SiO2 particles modified by cetyltrimethoxysilane increases from 11.7° to 108.2°, the hydrophilic property disappears and the hydrophobic property appears.
-
-
[1] MUHAMAD M S, SALIM M R, LAU W J. Surface modification of SiO2 nanoparticles and its impact on the properties of PES-based hollow fiber membrane[J]. RSC Advances, 2015, 5(72):58644-58654.
[2] ZOU H, WU S S, SHEN J. Polymer/silica nanocomposites:preparation, characterization, properties, and applications[J]. Chemical Reviews, 2008, 108(9):3893-3957.
[3] WANG C, YANG H, CHEN F, et al. Influences of VTMS/SiO2 ratios on the contact angle and morphology of modified super-hydrophobic silicon dioxide material by vinyl trimethoxy silane[J]. Results in Physics, 2018, 10:891-902.
[4] LIU X, WANG Z Y, ZHAO C J, et al. Preparation and characterization of silane-modified SiO2 particles reinforced resin composites with fluorinated acrylate polymer[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 80:11-19.
[5] DOLATZADEH F, MORADIAN S, JALILI M M. Influence of various surface treated silica nanoparticles on the electrochemical properties of SiO2/polyureth-ane nanocoatings[J]. Corrosion Science, 2011, 53(12):4248-4257.
[6] MACHRAFI H, LEBON G, IORIO C S. Effect of volumefraction dependent agglomeration of nanoparticles on the thermal conductivity of nanocomposites:applications to epoxy resins, filled by SiO2, AlN and MgO nanoparticles[J]. Composites Science and Technol-ogy, 2016, 130:78-87.
[7] WANGY, GU G S, WEI F, et al. Fluidization and agglomerate structure of SiO2 nanoparticles[J]. Powder Technology, 2002, 124(1-2):152-159.
[8] TIAN S J, GAO W, LIU Y J, et al. Effects of surface modification Nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 595:124682.
[9] TANG X C, ZHOU B B, CHEN C, et al. Regulation of polymerizable modification degree of nano-SiO2 and the effects on performance of composite microsphere for conformance control[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 585:124100.
[10] LI H Y, ZHANG Z S, MA X F, et al. Synthesis and characterization of epoxy resin modified with nano-SiO2 and γ-glycidoxypropyltrimethoxy silane[J]. Surface and Coatings Technology, 2007, 201(9-11):5269-5272.
[11] PAN G S, GU Z H, ZHOU Y, et al. Preparation of silane modified SiO2 abrasive particles and their Chemical Mechanical Polishing (CMP) performances[J]. Wear, 2011, 273(1):100-104.
[12] WANG Z H, YUAN L, LIANG G Z, et al. Mechanically durable and self-healing super-hydrophobic coating with hierarchically structured KH570 modified SiO2-decorated aligned carbon nanotube bundles[J]. Chemical Engineering Journal, 2021, 408:127263.
[13] YUAN Y H,PENG C, CHEN D, et al. Synthesis of a coupling agent containing polyurethane chain and its influence on improving the dispersion of SiO2 nanoparticles in epoxy/amine thermoset[J]. Composites Part A:Applied Science and Manufacturing, 2021, 149:106573.
[14] LI C X, FENG D D, WANG X K, et al. A thermochemical approach to enhance hydrophobicity of SiC/SiO2 powder using γ-methacryloxypropyl trimethoxy silane and octylphenolpolyoxyethylene ether (7)[J]. Applied Surface Science, 2016, 360:45-51.
[15] HSIANG H I, CHANG Y L, CHEN C Y, et al. Si-lane functional effects on the rheology and abrasion resistance of transparent SiO2/UV-curable resin nano-composites[J]. Materials Chemistry and Physics, 2010, 120(2-3):476-479.
[16] STOJANOVIC D, ORLOVIC A, GLISIC S B, et al. Preparation of MEMO silanecoated SiO2 nanoparticles under high pressure of carbon dioxide and ethanol[J]. The Journal of Supercritical Fluids, 2010, 52(3):276-284.
[17] 刘琪, 崔海信, 顾微, 等. 硅烷偶联剂KH-570对纳米二氧化硅的表面改性研究[J]. 纳米科技, 2009(3):15-18. [18] CAPPELLETTI G, FERMO P. Hydrophobic and superhydrophobic coatings for limestone and marble conservation[M]//Smart Composite Coatings and Membranes. Amsterdam:Elsevier, 2016:421-452.
[19] ANITHA C, AZIM S S, MAYAVAN S. Fluorine free superhydrophobic surface textured silica particles and its dynamics-Transition from impalement to impingement[J]. Journal of Alloys and Compounds, 2017, 711:197-204.
[20] CAI Y, LI J, YI L M, et al. Fabricating superhydrophobic and oleophobic surface with silica nanoparti-cles modified by silanes and environment-friendly fluorinated chemicals[J]. Applied Surface Science, 2018, 450:102-111.
[21] GURAV A B, XU Q F, LATTHE S S, et al. Superhydrophobic coatings prepared from methyl-modified silica particles using simple dip-coating method[J]. Ceramics International, 2015, 41(2):3017-3023.
[22] DASH S, MISHRA S, PATEL S, et al. Organically modified silica:synthesis and applications due to its surface interaction with organic molecules[J]. Advances in Colloid and Interface Science, 2008, 140(2):77-94.
[23] SOHRABI B, MANSOURI F, KHALIFAN S Z. The study of glass superhydrophobicity by modified SiO2-hexadecyltrimethoxysilane (SiO2-m-HDTMS) nanoparticles and mixture of surfactants[J]. Progress in Organic Coatings, 2019, 131:73-81.
[24] LOU M Y, WANG D P, HUANG W H, et al. Effect of silane-coupling agents on synthesis and character of core-shell SiO2 magnetic microspheres[J]. Journal of Magnetism and Magnetic Materials, 2006, 305(1):83-90.
[25] KE Q P, FU W Q, WANG S, et al. Facile preparation of superhydrophobic biomimetic surface based on octadecyltrichlorosilane and silica nanoparticles[J]. ACS Applied Materials & Interfaces, 2010, 2(8):2393-2398.
-
期刊类型引用(2)
1. 胡娟,肖楠,李文强,曾向宏,陈莉,陈敏剑,周远建. 2023年国内有机硅进展. 有机硅材料. 2024(03): 73-90 . 百度学术
2. 余茂林,邓安仲,沈海玉,罗盛,杨艺斌. 改性纳米SiO_2-苯丙乳液混凝土复合防护涂层的制备及性能研究. 混凝土与水泥制品. 2024(11): 1-6 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 282
- HTML全文浏览量: 48
- PDF下载量: 63
- 被引次数: 4