快速凝固AZ31镁合金的微观组织与力学性能

孙宇初, 陈云贵

孙宇初, 陈云贵. 快速凝固AZ31镁合金的微观组织与力学性能[J]. 材料开发与应用, 2024, 39(2): 44-49.
引用本文: 孙宇初, 陈云贵. 快速凝固AZ31镁合金的微观组织与力学性能[J]. 材料开发与应用, 2024, 39(2): 44-49.
SUN Yuchu, CHEN Yungui. Microstructure and Mechanical Characteristics of Rapidly Solidified AZ31 Magnesium Alloy[J]. Development and Application of Materials, 2024, 39(2): 44-49.
Citation: SUN Yuchu, CHEN Yungui. Microstructure and Mechanical Characteristics of Rapidly Solidified AZ31 Magnesium Alloy[J]. Development and Application of Materials, 2024, 39(2): 44-49.

快速凝固AZ31镁合金的微观组织与力学性能

详细信息
    作者简介:

    孙宇初,男,1998年生,硕士研究生,研究方向为快速凝固镁合金。E-mail:yuchusun@163.com

  • 中图分类号: TG113

Microstructure and Mechanical Characteristics of Rapidly Solidified AZ31 Magnesium Alloy

  • 摘要: 基于单辊快速凝固工艺,分析了不同辊速条件下AZ31镁合金的带材组织及其250 ℃热挤压棒材的力学性能。结果表明,带材截面微观组织存在的急冷定向凝固区和缓冷等轴晶区,是受温度梯度影响产生的微观组织分区现象;熔体冷却时裹气产生隔热区,导致带材微观组织均一度降低;在17.58 m/s最优辊速条件下,AZ31镁合金的250 ℃热挤压棒材的屈服强度和伸长率分别达到360 MPa和14.47 %。
    Abstract: AZ31 magnesium ribbons are prepared by the single roll rapid solidification method at different rolling speeds, and the microstructures are analyzed. The mechanical properties of AZ31 magnesium rods extruded at 250 ℃ from the ribbons are investigated. Results indicate that the rapid cooling directionally solidification region and gradual cooling equiaxed grain region are found in the cross-sections of the AZ31 magnesium ribbons, which is a thermal-gradient driven microstructure partition phenomenon. The heat insulation zone forms due to the gas entrapment in the melt pool, leading to the decline of microstructural homogeneity of the ribbons. It is found out that when the rolling speed is 17.58 m/s, the AZ31 magnesium rods extruded at 250 ℃ from the ribbons have the optimal performance, with the yield strength up to 360 MPa and the elongation up to 14.47 %.
  • [1]

    SAHM P R, JONES H, ADAM C M. Science and Technology of the Undercooled Melt:Rapid Solidification Materials and Technologies[M]. Dordrecht:Springer Netherlands, 1986.

    [2] 王渠东. 镁合金及其成形技术[M]. 北京:机械工业出版社, 2017.
    [3]

    ZIĘ BA A, STAN-GȽ OWIŃ SKA K, CZAJA P, et al. Microstructure and catalytic activity of Al13Fe4 and Al13Co4 melt-spun alloys[J]. Microscopy and Microanalysis, 2022, 28(3):961-967.

    [4]

    JARDIM P M, SOLÓRZANO G, VANDER SANDE J B. Second phase formation in melt-spun Mg-Ca-Zn alloys[J]. Materials Science and Engineering:A, 2004, 381(1-2):196-205.

    [5]

    PAULIN I, DONIK č, CVAHTE P, et al. Bimodal microstructure obtained by rapid solidification to improve the mechanical and corrosion properties of aluminum alloys at elevated temperature[J]. Metals, 2021, 11(2):230.

    [6]

    GORSSE S, VIVōS S, BELLANGER P, et al. Multi-scale architectured thermoelectric materials in the Mg2(Si, Sn) system[J]. Materials Letters, 2016, 166:140-144.

    [7]

    TKATCH V I, GRISHIN A M, MAKSIMOV V V. Estimation of the heat transfer coefficient in melt spinning process[J]. Journal of Physics:Conference Series, 2009, 144:012104.

    [8]

    GOVIND, SUSEELAN NAIR K, MITTAL M C, et al. Development of rapidly solidified (RS) magnesium-aluminium-zinc alloy[J]. Materials Science and Engineering:A, 2001, 304-306:520-523.

    [9]

    IZUMI S, YAMASAKI M, KAWAMURA Y. Relation between corrosion behavior and microstructure of Mg-Zn-Y alloys prepared by rapid solidification at various cooling rates[J]. Corrosion, 2009, 51(2):395-402.

    [10]

    EKRAMI A, SHAHRI F, MIRAK A. Effect of rare-earth elements and quenching wheel speed on the structure, mechanical and thermal properties of rapidly solidified AZ91 Mg melt-spun ribbons[J]. Materials Science and Engineering:A, 2017, 684:586-591.

    [11]

    KURZ W, GILGIEN P. Selection of microstructures in rapid solidification processing[J]. Materials Science and Engineering:A, 1994, 178(1-2):171-178.

    [12]

    Flemings M C, Mortensen A. Rapid solidification pro-cessing of magnesium alloys[M]. Watertown:Department of Materials Science & Engineering Massachu-setts Institute of Technology, 1984.

    [13]

    NUSSBAUM G, SAINFORT P, REGAZZONI G, et al. Strengthening mechanisms in the rapidly solidified AZ 91 magnesium alloy[J]. Scripta Metallurgica, 1989, 23(7):1079-1084.

  • 期刊类型引用(1)

    1. 李振华,宋都都,章煜,尹博,闫洪军,蒋杨英,唐建良. CeO_2添加量对激光选区熔化TC4合金摩擦磨损性能的影响. 材料保护. 2024(07): 66-72+135 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  182
  • HTML全文浏览量:  76
  • PDF下载量:  27
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-13
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回