基于改进PSO算法的非均匀材料区间均匀化分析

林峰

林峰. 基于改进PSO算法的非均匀材料区间均匀化分析[J]. 材料开发与应用, 2021, 36(3): 12-18.
引用本文: 林峰. 基于改进PSO算法的非均匀材料区间均匀化分析[J]. 材料开发与应用, 2021, 36(3): 12-18.
LIN Feng. Interval Multiscale Homogenization Analysis of Heterogeneous Composite Materials Based on Improved PSO Algorithm at Finite Deformation[J]. Development and Application of Materials, 2021, 36(3): 12-18.
Citation: LIN Feng. Interval Multiscale Homogenization Analysis of Heterogeneous Composite Materials Based on Improved PSO Algorithm at Finite Deformation[J]. Development and Application of Materials, 2021, 36(3): 12-18.

基于改进PSO算法的非均匀材料区间均匀化分析

详细信息
    作者简介:

    林峰,男,1990年生,硕士,研究领域为结构可靠性。E-mail:geraldlin1990@126.com

  • 中图分类号: TG302

Interval Multiscale Homogenization Analysis of Heterogeneous Composite Materials Based on Improved PSO Algorithm at Finite Deformation

  • 摘要: 利用区间均匀化方法对有限弹性变形下的非均匀材料进行了研究,引入多尺度有限元机制,将非均匀材料等效为某个非局部的代表性体积单元(RVE)。采用基于多尺度有限元与改进的粒子群(PSO)算法相结合的方式,对非均匀材料的有效参数(如弹性张量和第一Piola-Kirchhoff应力以及应变能等)进行了区间分析,充分考虑了代表性体积单元在不同边界条件下的区间参数的不确定性,以及不同区间条件对于代表性体积单元的有效参数的影响。
    Abstract: Heterogeneous composite material in the context of elasticity at finite deformation was studied by the method of internal homogenization analysis. In the process of research, the multiscale finite mechanism was introduced and the heterogeneous composite material was taken as a non-local representative volume element(RVE). The interval effective quantities such as tangent tensor, first Piola-Kirchhoff stress and strain energy were obtained by using a multiscale finite element strategy combined with the improved particle swarm optimization algorithm, with full consideration of the internal parameter uncertainty of RVE set in different deformation-controlled boundary conditions and the effect of different internal conditions on the interval effective quantities of the RVE.
  • [1]

    ZOHDI T I,WRIGGERS P.An introduction to computational micromechanics[M].Berlin:Springer Berlin Heidelberg,2005.

    [2] 陈建军,马洪波,马娟,等.基于随机因子的结构分析方法[J].工程力学,2012,29(4):15-23.
    [3]

    BOGDANOR M J,OSKAY C,CLAY S B.Multiscale modeling of failure in composites under model parameter uncertainty[J].Computational Mechanics,2015,56(3):389-404.

    [4]

    MONETTO I,DRUGAN W J.A micromechanics-based nonlocal constitutive equation and minimum RVE size estimates for random elastic composites containing aligned spheroidal heterogeneities[J].Journal of the Mechanics and Physics of Solids,2009,57(9):1578-1595.

    [5]

    LUCIANO R,WILLIS J R.FE analysis of stress and strain fields in finite random composite bodies[J].Journal of the Mechanics and Physics of Solids,2005,53(7):1505-1522.

    [6]

    WILLOUGHBY N,PARNELL W J,HAZEL A L,et al.Homogenization methods to approximate the effective response of random fibre-reinforced composites[J].International Journal of Solids and Structures,2012,49(13):1421-1433.

    [7] 赵仕宇,詹艳然,周超.板料数控渐进成形过程金属变形行为分析[J].中国工程机械学报,2014,12(2):140-145.
    [8]

    PIVOVAROV D,STEINMANN P.Modified SFEM for computational homogenization of heterogeneous materials with microstructural geometric uncertainties[J].Computational Mechanics,2016,57(1):123-147.

    [9]

    JIANG C,HAN X,LU G Y,et al.Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique[J].Computer Methods in Applied Mechanics and Engineering,2011,200(33-36):2528-2546.

    [10]

    LIU N G,GAO W,SONG C M,et al.Interval dynamic response analysis of vehicle-bridge interaction system with uncertainty[J].Journal of Sound and Vibration,2013,332(13):3218-3231.

    [11]

    RODNEY H.On constitutive macro-variables for heterogeneous solids at finite strain[J].Proceedings of the Royal Society of London A Mathematical and Physical Sciences,1972,326(1565):131-147.

    [12]

    KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks.Perth,WA,Australia.IEEE,1995:1942-1948.

    [13] 王新,李海越.基于GA-PSO混合算法的压力机构多目标优化与动力学仿真[J].中国工程机械学报,2018,16(1):59-63.
    [14]

    YANG C W,GAO W,LIU N G,et al.Low-discrepancy sequence initialized particle swarm optimization algorithm with high-order nonlinear time-varying inertia weight[J].Applied Soft Computing,2015,29:386-394.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  238
  • HTML全文浏览量:  101
  • PDF下载量:  12
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-08-30
  • 刊出日期:  2021-06-24

目录

    /

    返回文章
    返回