承受双向等拉应力平面贯穿型中心切口弹性应力集中系数的尺寸效应分析

薛钢

薛钢. 承受双向等拉应力平面贯穿型中心切口弹性应力集中系数的尺寸效应分析[J]. 材料开发与应用, 2023, 38(2): 1-9.
引用本文: 薛钢. 承受双向等拉应力平面贯穿型中心切口弹性应力集中系数的尺寸效应分析[J]. 材料开发与应用, 2023, 38(2): 1-9.
XUE Gang. Analysis of the Size Effects on the Elastic Stress Concentration Factors at the Top of the Penetrating Notch in the Center of the Double-tension-plate[J]. Development and Application of Materials, 2023, 38(2): 1-9.
Citation: XUE Gang. Analysis of the Size Effects on the Elastic Stress Concentration Factors at the Top of the Penetrating Notch in the Center of the Double-tension-plate[J]. Development and Application of Materials, 2023, 38(2): 1-9.

承受双向等拉应力平面贯穿型中心切口弹性应力集中系数的尺寸效应分析

详细信息
    作者简介:

    薛钢,男,1978年生,博士,研究员,主要从事船体结构钢强度与失效研究。E-mail:xuegang_29@163.com

  • 中图分类号: TB301

Analysis of the Size Effects on the Elastic Stress Concentration Factors at the Top of the Penetrating Notch in the Center of the Double-tension-plate

  • 摘要: 采用线弹性有限元方法系统分析了350种不同尺寸条件下承受双向等拉应力平面贯穿型中心切口端部应力场,建立了垂直于切口长度方向的正应力分量Ktσy、应力第一不变量集中系数KtI1和Mises等效应力集中系数Ktσ等各项弹性应力集中系数的表达式。结果表明,各项弹性应力集中系数随切口长度与板宽之比2a/W的增大呈二次幂函数形式增大,随切口顶端半径与切口半宽之比r/a的降低呈指数函数形式增大。
    Abstract: The stress fields at the top of the penetrating notch in the center of the double-tension-plate are analyzed with 350 sets of sizes by elastic finite element method. The functions of the normal stress concentration factor normal to the length-direction Ktσy, the first stress invariant concentration factor KtI1 and the Mises equivalent stress concentration factor i>Ktσ are built. The results indicate that all the elastic stress concentration factors increase with the increase of the ratio 2a/W of the length to the width of the notch as the parabolic function, and reduce exponentially with the decrease of the ratio r/a of the radius to half of the width of the notch.
  • [1] Г.С.皮萨林可, A.A.列别捷夫. 复杂应力状态下的材料变形与强度[M]. 北京:科学出版社, 1983.
    [2] 薛钢. 基于应力第一不变量I1的断裂准则假设[J]. 材料开发与应用, 2014, 29(6):1-5.
    [3] 薛钢, 宫旭辉, 高珍鹏,等. 近似二维应力状态下I1断裂准则假设有效性的试验验证[J]. 材料开发与应用, 2018, 33(3):1-9.
    [4] 薛钢. 各向同性均质材料典型断裂行为的I1断裂准则适应性分析[J]. 材料开发与应用,2018,33(4):1-5.
    [5] 薛钢.承受双向等拉应力的平面应变I型裂纹线弹性断裂的I1准则与K准则一致性分析[J]. 材料开发与应用,2023, 38(1):1-8.
    [6] 薛钢,王涛,杨超飞,等. 基于I1断裂准则的铁素体型钢焊接氢致开裂机制研究[J]. 2018,33(4):49-52.
    [7] 薛钢. 基于Mises屈服准则和I1断裂准则的焊接接头力学特性分析[J]. 材料开发与应用,2022, 37(5):1-10.
    [8] 薛钢. 承受单向静拉应力的有限宽板双边对称裂纹尖端I1mises的分布函数[J]. 材料开发与应用,2016,31(1):8-12.
    [9]

    Class N K. Guidelines on brittle crack arrest design[R]. Tokyo:Niponn Kaiji Kyokai, 2009:1-18.

计量
  • 文章访问数:  282
  • HTML全文浏览量:  83
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回