大尺寸仿生微结构表面防污涂层制备及性能研究

王萌, 谢志鹏, 汤黎容, 邓冰锋, 张初镱, 王晶晶

王萌, 谢志鹏, 汤黎容, 邓冰锋, 张初镱, 王晶晶. 大尺寸仿生微结构表面防污涂层制备及性能研究[J]. 材料开发与应用, 2021, 36(6): 36-43.
引用本文: 王萌, 谢志鹏, 汤黎容, 邓冰锋, 张初镱, 王晶晶. 大尺寸仿生微结构表面防污涂层制备及性能研究[J]. 材料开发与应用, 2021, 36(6): 36-43.
WANG Meng, XIE Zhipeng, TANG Lirong, DENG Bingfeng, ZHANG Chuyi, WANG Jingjing. Preparation and Performance Research on Antifouling Coating with Large-size Bionic Microstructure[J]. Development and Application of Materials, 2021, 36(6): 36-43.
Citation: WANG Meng, XIE Zhipeng, TANG Lirong, DENG Bingfeng, ZHANG Chuyi, WANG Jingjing. Preparation and Performance Research on Antifouling Coating with Large-size Bionic Microstructure[J]. Development and Application of Materials, 2021, 36(6): 36-43.

大尺寸仿生微结构表面防污涂层制备及性能研究

详细信息
    作者简介:

    王萌,男,1988年生,工程师,长期从事船舶防污涂料研究。E-mail:1032116251@qq.com

  • 中图分类号: TQ637.3

Preparation and Performance Research on Antifouling Coating with Large-size Bionic Microstructure

  • 摘要: 鲨鱼、海豚等海洋生物的表皮结构具有防污功能,猪笼草的口缘区具有液膜单向传递特征,这些表面结构形貌可为船舶涂层的防污和减阻设计提供重要依据。根据鲨鱼皮表面肋条状结构、猪笼草口缘区单向沟槽和弧形结构,设计简化单向V型沟槽微结构形貌,并结合CFD模拟计算分析V型沟槽减阻性能,确定了仿生微结构的形貌及尺寸。利用皮秒激光刻蚀技术,在铝合金基材表面刻蚀微结构形貌模板,然后在未完全固化的防污涂层表面压印,通过对软/硬模板、固化时间、压印压强等工艺条件参数的考察及优化,制备出较大尺寸的仿生微结构表面涂层。使用三维形貌测试仪、接触角测试仪等表征仿生微结构涂层表面,并进行多海域实海浸泡性能实验。结果显示,该仿生涂层表面微沟槽间距为90.8 μm,深度为60.3 μm,其表面接触角为121.7°,微结构形貌均匀,具有良好的实海防污性能。
    Abstract: Special surface structures of marine organisms such like sharks and dolphins have antifouling function, and the peristome of nepenthes possesses the feature of one-way transmission of liquid film. Both of the structures can provide references for antifouling and drag reduction designs for ship coatings. According to the rib-like structure on the surface of shark skin, unidirectional grooves and arc-shaped structures in the peristome of nepenthes, simplified microstructure with unidirectional V-type grooves are designed, and together with drag reduction rate calculated by CFD, bionic microstructure and size of the antifouling coating is determined. The microstructure topography template is prepared by using picosecond laser to etch the surface of the aluminum alloy, and then imprint the surface of the incompletely cured antifouling coating. Through the investigation and optimization of soft/hard template, curing time and imprint pressure, coating with large-size bionic microstructure is prepared. The 3-dimensional shape tester and contact angle tester are used to characterize the surface of the bionic microstructure coating, and the real sea immersion test is conducted. The results show that the surface microstructure morphology of the bionic coating is uniform and show good antifouling performance, with the microgroove spacing of 90.8 μm, the microgroove depth of 60.3 μm, and the surface contact angle of the microstructure coating of 121.7°.
  • [1]

    LIN Y T, TING Y S, CHEN B Y, et al. Bionic shark skin replica and zwitterionic polymer brushes functionalized PDMS membrane for anti-fouling and wound dressing applications[J]. Surface and Coatings Technology, 2020, 391:125663.

    [2] 魏欢. 类似海豚表皮微结构的构建及其仿生涂层防污性能研究[D]. 哈尔滨:哈尔滨工程大学, 2012.
    [3]

    LI Y, WANG G Q, GUO Z H, et al. Preparation of microcapsules coating and the study of their bionic anti-fouling performance[J]. Materials, 2020, 13(7):1669.

    [4]

    CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata[J]. Nature, 2016, 532(7597):85-89.

    [5]

    CHEN H W, ZHANG L W, ZHANG P F, et al. A novel bioinspired continuous unidirectional liquid spreading surface structure from the peristome surface of nepenthes alata[J]. Small, 2017, 13(4):1601676.

    [6]

    LI C X, LI N, ZHANG X S, et al. Uni-directional transportation on peristome-mimetic surfaces for completely wetting liquids[J]. Angewandte Chemie, 2016, 128(48):15212-15216.

    [7] 白秀琴, 袁成清, 严新平, 等. 基于贝壳表面形貌仿生的船舶绿色防污研究[J]. 武汉理工大学学报, 2011, 33(1):75-78.
    [8]

    REN X T, GUO M S, XUE L L, et al. A self-cleaning mucus-like and hierarchical ciliary bionic surface for marine antifouling[J]. Advanced Engineering Materials, 2020, 22(5):1901198.

    [9] 宋美艳. 微球构筑的仿生减阻防污涂层的研究[D]. 北京:北京化工大学, 2018.
    [10]

    FENG C C, ZHANG Z Y, LI J, et al. A bioinspired, highly transparent surface with dry-style antifogging, antifrosting, antifouling, and moisture self-cleaning properties[J]. Macromolecular Rapid Communications, 2019, 40(6):1800708.

    [11] 陈子飞, 许季海, 赵文杰, 等. 仿甲鱼壳织构化有机硅改性丙烯酸酯涂层的制备及其防污行为[J]. 中国表面工程, 2013, 26(6):80-85.
    [12]

    ZHAO X Z, LIU C K. One-step fabricated bionic PVDF ultrafiltration membranes exhibiting innovative antifouling ability to the cake fouling[J]. Journal of Membrane Science, 2016, 515:29-35.

    [13] 陈美玲, 张羽生, 廖道鹏, 等. 丙烯酸系仿生/低表面能海洋防污涂料的研究[J]. 中国涂料, 2013, 28(12):14-16.
    [14]

    GU Y Q, YU L Z, MOU J G, et al. Research strategies to develop environmentally friendly marine antifouling coatings[J]. Marine Drugs, 2020, 18(7):371.

    [15] 李义斌, 谷云庆, 牟介刚, 等. 低表面能减阻防污仿生涂料的研究现状[J]. 材料保护, 2014, 47(6):48-51.
    [16]

    WANG Y J, ZHAO W J, WU W T, et al. Fabricating bionic ultraslippery surface on titanium alloys with excellent fouling-resistant performance[J]. ACS Applied Bio Materials, 2019, 2(1):155-162.

    [17]

    SULLIVAN T, O'CALLAGHAN I. Recent developments in biomimetic antifouling materials:a review[J]. Biomimetics, 2020, 5(4):58.

    [18]

    LI Z, GUO Z. Bioinspired surfaces with wettability for antifouling application[J]. Nanoscale, 2019, 11(47):22636-22663.

计量
  • 文章访问数:  298
  • HTML全文浏览量:  45
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-04
  • 刊出日期:  2021-12-24

目录

    /

    返回文章
    返回