Q345R高压空冷器焊接接头应力腐蚀开裂分析

王宇, 郑文健, 卓旻, 冯道臣, 杨建国

王宇, 郑文健, 卓旻, 冯道臣, 杨建国. Q345R高压空冷器焊接接头应力腐蚀开裂分析[J]. 材料开发与应用, 2023, 38(5): 86-93.
引用本文: 王宇, 郑文健, 卓旻, 冯道臣, 杨建国. Q345R高压空冷器焊接接头应力腐蚀开裂分析[J]. 材料开发与应用, 2023, 38(5): 86-93.
WANG Yu, ZHENG Wenjian, ZHUO Min, FENG Daochen, YANG Jianguo. Analysis of Stress Corrosion Cracking in Welded Joints of Q345R High-Pressure Air Cooler[J]. Development and Application of Materials, 2023, 38(5): 86-93.
Citation: WANG Yu, ZHENG Wenjian, ZHUO Min, FENG Daochen, YANG Jianguo. Analysis of Stress Corrosion Cracking in Welded Joints of Q345R High-Pressure Air Cooler[J]. Development and Application of Materials, 2023, 38(5): 86-93.

Q345R高压空冷器焊接接头应力腐蚀开裂分析

详细信息
    作者简介:

    王宇,男,1999年生,硕士研究生,从事动力工程及工程热物理研究。E-mail:211122020@zjut.edu.cn

  • 中图分类号: TG404

Analysis of Stress Corrosion Cracking in Welded Joints of Q345R High-Pressure Air Cooler

  • 摘要: 某高压空冷器进气口换热管和管板胀管焊接处发生泄漏事故,通过宏观观察、机械拉断断口及裂纹面分析、金相组织分析、显微硬度测试、扫描电子显微镜(SEM)以及X射线能谱分析(EDS)等分析方法对泄漏失效处及关键位置材料进行检测和分析。研究发现高压空冷器进出口失效位置的裂纹均是由管箱内壁接头处向胀接间隙表面开裂,并且裂纹面能谱分析结果发现大量的S元素存在。结合管道受力情况、断口形貌、元素分析判定本次失效的模式为硫化氢应力腐蚀开裂(SSCC)。管内硫化氢为腐蚀源,在焊接残余应力集中和外载结构应力的协同作用下,焊趾发生SSCC开裂,裂纹沿着熔合线扩展至胀管外壁,发生泄漏失效。
    Abstract: A leakage failure occurred in the welded joint of the heat exchanger tube and tube plate in a high-pressure air cooler turbine. The leakage and critical positions are investigated by means of macroscopic observation, mechanical fracture and crack surface analysis, metallographic analysis, microhardness test, scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). It is found out that the cracks at the failure location expands from the welded joint of the tube box to the surface of the expansion gap, and that a large amount of S element is present at the crack surface. The failure mode is determined to be hydrogen sulfide stress corrosion cracking (SSCC) by combining stress, fracture morphology, and elemental analyse. Due to the hydrogen sulfide in the tube, and the synergistic effect of the stress concentration and structural stress by the external load, SSCC cracking occurs in the weld toe, and the cracks propagates along the fusion line to the outer wall of the expanded tube, leading to the leakage failure.
  • [1]

    FENG D C, LI Z Y, ZHENG W J, et al. Failure analysis of welded joint leakage of TP321 pressure pipeline[J]. Engineering Failure Analysis, 2022, 139: 106413.

    [2] 邱浩. 管壳式换热器腐蚀失效分析系统设计[J]. 盐科学与化工, 2022, 51(2):43-46.
    [3] 时丕斌, 徐剑. 加氢隔膜密封盘换热器腐蚀失效分析与建议[J]. 石油化工腐蚀与防护, 2017, 34(2): 48-51.
    [4]

    SHI H Q, DING Y, MA L Q, et al. Corrosion failure analysis of 35CrMo bolt in wet hydrogen sulfide environment[J]. Applied Mechanics and Materials, 2013, 291-294: 2605-2609.

    [5]

    MAKARENKO V D, PETROVSKII V A, CHERNOV V Y, et al. A phenomenological model for hydrogen sulfide stress corrosion cracking in petroleum tube steels[J]. Chemical and Petroleum Engineering, 2004, 40(1): 51-53.

    [6] 单婷婷, 姚连仲, 张中洋. 加氢裂化装置换热器腐蚀失效分析[J]. 全面腐蚀控制, 2014, 28(6): 66-68.
    [7] 龚博, 尉海晶, 刘瑞, 等. 管壳式换热器失效分析及解决方法探究[J]. 设备管理与维修, 2022(10):81-82.
    [8] 刘昱杰, 杨树方, 李德义, 等. 表面蒸发式空冷器管束失效分析与防护研究[J]. 表面技术, 2022, 51(12): 225-231.
    [9] 荆洪阳, 尚进, 徐连勇, 等. 换热器腐蚀失效分析[J]. 焊接学报, 2016, 37(9): 1-4.
    [10]

    IOFFE A V, TETYUEVA T V, VYBOISHCHIK M A, et al. Corrosion-mechanical fracture of tubing from carbon and alloy steels operating in environments containing hydrogen sulfide[J]. Metal Science and Heat Treatment, 2013, 54(9): 492-497.

    [11]

    KHOMA M S. Problems of fracture of metals in hydrogen-sulfide media[J].Materials Science, 2010, 46(2):190-200.

    [12]

    KHOMA M, CHUMALO H. Effect of hydrogen sulfide environment on the serviceability of structural materials for oil and gas equipment[J]. Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science), 2014, 4(1): 1-4.

    [13]

    NIE D F, CHEN X D, WU Q G, et al. Stress corrosion cracking behaviors of FV520B stainless steel used in a failed compressor impeller[J]. Engineering Failure Analysis, 2020, 116: 104701.

    [14]

    GOMES DA SILVA M J, FRAGOSO H A P, BA-RRIO R C A G, et al. Stress corrosion of an aust-enitic stainless steel expansion joint, a case study[J]. Engineering Failure Analysis, 2019, 97: 300-310.

    [15] 吴文信. 加氢裂化装置E-01006换热器硫化氢应力腐蚀开裂问题的探讨[J]. 石油化工设备技术, 2010, 31(3): 58-61.
    [16] 高章虎, 宋丽平, 张保林. 20/Q345R异种钢焊接接头残余应力及变形的有限元分析[J]. 焊接技术, 2022, 51(5): 134-137.
    [17] 秦明. FV520B叶轮叶片在H2S/CO2环境中的应力腐蚀裂纹扩展研究[D]. 济南: 山东大学, 2017.
    [18] 王全庭. 硫化氢应力腐蚀开裂原因的试验[J]. 石油化工腐蚀与防护, 2014, 31(3): 14-15.
    [19] 王全庭, 杨晶晶. 克服硫化氢应力腐蚀开裂的几种方法[J]. 石油化工腐蚀与防护, 2014, 31(5): 37-39.
    [20] 姜勇, 巩建鸣. 氢气预热器连接螺栓失效分析及解决对策[J]. 压力容器, 2007, 24(12): 29-32.
    [21]

    LIU R K, LI J K, LIU Z Y, et al. Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel[J]. International Journal of Materials Research, 2021, 106(6): 608-613.

    [22] 孙杰文, 湛小琳, 姚飞, 等. 氢气输送管线开裂原因分析[J]. 表面技术, 2016, 45(2): 50-56.
计量
  • 文章访问数:  127
  • HTML全文浏览量:  43
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-02
  • 网络出版日期:  2023-11-06

目录

    /

    返回文章
    返回