SLM增材制造铝合金和高温合金微流道磨粒流抛光工艺研究

李惠, 李微娜, 祁俊峰, 李敬洋, 张建超, 张建勋

李惠, 李微娜, 祁俊峰, 李敬洋, 张建超, 张建勋. SLM增材制造铝合金和高温合金微流道磨粒流抛光工艺研究[J]. 材料开发与应用, 2024, 39(2): 1-8,16.
引用本文: 李惠, 李微娜, 祁俊峰, 李敬洋, 张建超, 张建勋. SLM增材制造铝合金和高温合金微流道磨粒流抛光工艺研究[J]. 材料开发与应用, 2024, 39(2): 1-8,16.
LI Hui, LI Weina, QI Junfeng, LI Jingyang, ZHANG Jianchao, ZHANG Jianxun. Study on Abrasive Flow Polishing Process of Aluminum Alloy and High-temperature Alloy Microchannels by SLM Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(2): 1-8,16.
Citation: LI Hui, LI Weina, QI Junfeng, LI Jingyang, ZHANG Jianchao, ZHANG Jianxun. Study on Abrasive Flow Polishing Process of Aluminum Alloy and High-temperature Alloy Microchannels by SLM Additive Manufacturing[J]. Development and Application of Materials, 2024, 39(2): 1-8,16.

SLM增材制造铝合金和高温合金微流道磨粒流抛光工艺研究

基金项目: 

民用航天预研项目(D020302)

详细信息
    作者简介:

    李惠,女,1991年生,硕士,工程师,主要从事金属增材制造工艺研究。E-mail:lh1204618136@126.com

    通讯作者:

    张建勋,男,1962年生,教授,主要从事先进材料接合与连接技术研究。E-mail:jxzhang@mail.xjtu.edu.cn

  • 中图分类号: TG580.692

Study on Abrasive Flow Polishing Process of Aluminum Alloy and High-temperature Alloy Microchannels by SLM Additive Manufacturing

  • 摘要: 以激光选区熔化(SLM)技术为代表的金属增材制造技术,因固有的“粉末粘附”和“球化效应”等,使得制品的表面十分粗糙,难以满足使用要求。为解决SLM微流道粗糙内孔表面的精加工难题,本研究采用磨粒流抛光技术对SLM制备的AlSi10Mg和GH4169微流道内表面进行抛光,并研究了磨粒流工艺对微流道内孔表面粗糙度和尺寸精度的影响。结果表明,经磨粒流处理后,SLM增材制造铝合金和高温合金的内孔表面质量均得到有效改善,微流道内孔表面的粗糙度下降幅度在50 %以上;流道内孔表面干净无多余物附着;流道尺寸精度保持较高水平。因此,磨粒流工艺是SLM增材制造微流道结构零件的一种有效的抛光技术。
    Abstract: The metal additive manufacturing technology represented by the laser selective zone melting (SLM) technology makes the surface of the products very rough due to the inherent "powder adhesion" and "spheroidisation effect", which makes it difficult to meet the usage requirements. Facing the rough bore surface of SLM microfluidic channel, we adopt the abrasive flow polishing technology to polish the inner surface of AlSi10Mg and GH4169 microfluidic channels prepared by SLM, and investigate the effect of abrasive flow process on the surface roughness and dimensional accuracy of microfluidic channel bores. The results show that after the abrasive flow treatment, the surface qualities of the bores of both the aluminium alloy and high temperature alloy fabricated by SLM additive manufacturing are effectively improved, and the roughness of the micro-runner bore surface decreases by more than 50 %. The surfaces of the runner bores are clean with no attachments. There is no large change in the runner dimensions, and the dimensional accuracy is retained at a relatively high level. Therefore, the abrasive flow process is an effective polishing technique for SLM additive manufacturing of micro-runner structure parts.
  • [1] 秦艳利, 孙博慧, 张昊, 等. 选区激光熔化铝合金及其复合材料在航空航天领域的研究进展[J]. 中国激光, 2021, 48(14):15-31.
    [2]

    DADBAKHSH S, MERTENS R, HAO L A, et al. Sel-ective laser melting to manufacture "In situ" metal matrix composites:a review[J]. Advanced Engineering Materials, 2019, 21(3):1801244.

    [3] 顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):32-55.
    [4]

    ZHANG J L, SONG B, WEI Q S, et al. A review of selective laser melting of aluminum alloys:processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2):270-284.

    [5] 赵涛, 史耀耀, 蔺小军, 等. 汽轮机喷嘴环磨粒流抛光工艺参数优化[J]. 计算机集成制造系统, 2014, 20(9):2203-2209.
    [6] 张骁丽, 齐欢, 魏青松. 铝合金粉末选择性激光熔化成形工艺优化试验研究[J]. 应用激光, 2013, 33(4):391-397.
    [7]

    KUMAR S S, HIREMATH S S. A review on abrasive flow machining (AFM)[J]. Procedia Technology, 2016, 25:1297-1304.

    [8] 李俊烨. 微小孔磨粒流抛光装置的研制与工艺研究[D]. 长春:长春理工大学, 2011.
    [9] 郭应竹. 整体叶轮叶片型面抛光的最佳选择:磨粒流加工[J]. 航空工艺技术, 1995, 38(5):27-29.
    [10]

    FURUMOTO T, UEDA T, AMINO T, et al. A study of internal face finishing of the cooling channel in injection mold with free abrasive grains[J]. Journal of Materials Processing Technology, 2011, 211(11):1742-1748.

    [11] 石岩, 郭志, 刘佳, 等. SLM增材制造微流道内表面磨粒流抛光工艺与机理[J]. 表面技术, 2021, 50(9):361-369.
    [12] 高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210.
    [13] 高航, 彭灿, 王宣平. 航空增材制造复杂结构件表面光整加工技术研究及进展[J]. 航空制造技术, 2019, 62(9):14-22.
    [14]

    BERGMANN C, SCHMIEDEL A, UHLMANN E. Post-processing of selective laser melting components using abrasive flow machining and cleaning[C]//Int. Addit. Manuf. Symp, 2013.

    [15]

    WILLIAMS R E, MELTON V L. Abrasive flow finishing of stereolithography prototypes[J]. Rapid Prototyping Journal, 1998, 4(2):56-67.

    [16] 孙磊厚, 陈扬枝. 基于选区激光融化成型的空间曲线啮合轮后处理工艺及传动性能研究[J]. 机械设计与制造, 2011(9):87-89.
    [17] 刘睿诚. 激光选区熔化成型零件表面粗糙度研究及在免组装机构中的应用[D]. 广州:华南理工大学, 2014.
    [18] 王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10):2690-2698.
    [19] 王伟, 刘小君, 刘焜, 等. 利用摩擦学系统理论对磨粒流加工过程的分析[J]. 现代制造工程, 2011(12):6-9.
计量
  • 文章访问数:  238
  • HTML全文浏览量:  49
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回