Influence of Layer Thickness on Structural and Mechanical Properties of TiN/ZrON Multilayer Films
-
摘要: 采用反应磁控溅射技术制备了不同层厚的TiN/ZrON周期结构涂层,研究了层厚变化对TiN/ZrON涂层的晶体结构和力学性能的影响。所制备样品均具有面心立方(FCC)结构,当TiN层厚度为2.8 nm时,样品具有沿(111)取向的结构;当TiN层厚度为5.2 nm时,多层涂层具有明显的(111)、(200)和(220)衍射峰;当在基底上预沉积一层金属层时,多层涂层的晶体结构将不受基底类型的影响。此外, 较薄的ZrON层会有效提升TiN层的结晶能力,从而改变整个涂层的结晶性能。Ti/[TiN(5.2 nm)/ZrON(0.6 nm)]100样品的最高硬度和弹性模量分别为15.3 GPa和202.4 GPa,平均摩擦系数为0.17,耐磨性良好。Abstract: The TiN/ZrON periodic structure films with different layer thicknesses are prepared by reactive magnetron sputtering technique. The effects of layer thickness variation on the crystal structures and mechanical properties of TiN/ZrON coatings are investigated. All the prepared samples possess a face-centered cubic (FCC) structure. The specimen has a TiN (111) orientation structure when the TiN layer thickness is 2.8 nm. When the TiN layer thickness is 5.2 nm, the multilayer films have the obvious (111), (200) and (220) diffraction peaks. It is concluded that the crystal structure of the specimen is not affected by the substrate type when a metal layer is pre-deposited on the substrate. Furthermore, when the thickness of the ZrON layer is thin, the crystallization of the next TiN layer can be effectively promoted. The maximum hardness and elasticity modulus of the Ti/[TiN(5.2 nm)/ZrON(0.6 nm)]100 specimen are 15.3 and 202.4 GPa, respectively, and the friction coefficient is 0.17, demonstrating good abrasive resistance.
-
Keywords:
- periodic structure /
- multilayer film /
- TiN /
- ZrON /
- magnetron sputtering
-
-
[1] 范喜迎, 黄美东, 李洪玉, 等. 氮气流量对电弧离子镀CrN薄膜组织结构和性能的影响[J]. 真空, 2013, 50(3): 63-65. [2] 徐成俊. 磁控溅射TiN及ZrN薄膜的特性研究[D]. 重庆: 重庆大学, 2005. [3] 徐建华, 王昕, 马胜利, 等. TiN纳米薄膜的高硬度及其产生机制[J]. 材料研究学报, 2008, 22(2): 201-204. [4] CHU X, BARNETT S A. A model of superlattice yield stress and hardness enhancements[J]. MRS Online Proceedings Library, 2011, 382(1): 291.
[5] UPADHYAY R K, KUMARASWAMIDHAS L A. Investigation of monolayer-multilayer PVD nitride coating[J]. Surface Engineering, 2015, 31(2): 123-133.
[6] BARNETT S A, MADAN A, KIM I, et al. Stability of nanometer-thick layers in hard coatings[J]. MRS Bulletin, 2003, 28(3): 169-172.
[7] PALDEY S, DEEVI S C. Single layer and multilayer wear resistant coatings of (Ti, Al) N: a review[J]. Materials Science and Engineering: A, 2003, 342(1-2): 58-79.
[8] SCHLÖGL M, PAULITSCH J, MAYRHOFER P H. Thermal stability of CrN/AlN superlattice coatings[J]. Surface and Coatings Technology, 2014, 240: 250-254.
[9] 杨波波, 孙珲, 杨田林, 等. 结构调制超硬Ti/TiN纳米多层涂层的制备及其尺寸效应[J]. 材料研究学报, 2019, 33(2): 138-144. [10] FALLMANN M, CHEN Z, ZHANG Z L, et al. Mechanical properties and epitaxial growth of TiN/AlN superlattices[J]. Surface and Coatings Technology, 2019, 375: 1-7.
[11] STAMPFL C, FREEMAN A J. Structure and stability of transition metal nitride interfaces from first-principles: AlN/VN, AlN/TiN, and VN/TiN[J]. Applied Surface Science, 2012, 258(15): 5638-5645.
[12] POGREBNJAK A D, EYIDI D, ABADIAS G, et al. Structure and properties of arc evaporated nanoscale TiN/MoN multilayered systems[J]. International Journal of Refractory Metals and Hard Materials, 2015, 48: 222-228.
[13] SANTECCHIA E, HAMOUDA A M S, MUSHARAVATI F, et al. Wear resistance investigation of titanium nitride-based coatings[J]. Ceramics International, 2015, 41(9): 10349-10379.
[14] CHEN Y M, GUO T, WANG J W, et al. Effects of orientation on microstructure and mechanical properties of TiN/AlN superlattice films[J]. Scripta Materialia, 2021, 201: 113951.
[15] MAYRHOFER P H, RACHBAUER R, HOLEC D, et al. Protective transition metal nitride coatings[M]//Comprehensive Materials Processing. Amsterdam: Elsevier, 2014: 355-388.
[16] CHEN Q C, LI A, WU G Z, et al. Tribochemistry of TiN films sliding against ceramic counterparts in vacuum condition and N2 atmosphere[J]. Ceramics International, 2023, 49(6): 8907-8915.
[17] TAVARES C J, REBOUTA L, ALMEIDA B, et al. Structural characterization of multilayered sputtered TiN/ZrN coatings[J]. Surface and Coatings Technology, 1998, 100-101: 65-71.
[18] TAVARES C J, REBOUTA L, ALMEIDA B, et al. Deposition and characterization of multilayered TiN/ZrN coatings[J]. Thin Solid Films, 1998, 317(1-2): 124-128.
[19] TAVARES C J, REBOUTA L, ANDRITSCHKY M, et al. Mechanical characterisation of TiN/ZrN multi-layered coatings[J]. Journal of Materials Processing Technology, 1999, 92-93: 177-183.
[20] ZHOU C, WANG J J, MENG J, et al. Effects of modulation layer thickness on fracture toughness of a TiN/AlN-Ni multilayer film[J]. Materials & Design, 2022, 222: 111097.
[21] MAKSAKOVA O, SIMOẼS S, POGREBNJAK A, et al. The influence of deposition conditions and bilayer thickness on physical-mechanical properties of CA-PVD multilayer ZrN/CrN coatings[J]. Materials Characterization, 2018, 140: 189-196.
[22] CHAN Y C, CHEN H W, CHAO P S, et al. Microstructure control in TiAlN/SiNx multilayers with app-ropriate thickness ratios for improvement of hardness and anti-corrosion characteristics[J]. Vacuum, 2013, 87: 195-199.
[23] CARRETERO E, ALONSO R, PELAYO C. Optical and electrical properties of stainless steel oxynitride thin films deposited in an in-line sputtering system[J]. Applied Surface Science, 2016, 379: 249-258.
[24] CARVALHO P, VAZ F, REBOUTA L, et al. Structural, electrical, optical, and mechanical characterizations of decorative ZrOxNy thin films[J]. Journal of Applied Physics, 2005, 98(2): 023715.
[25] CUBILLOS G, OLAYA J, CLAVIJO D, et al. Corrosion resistance and biocompatibility of zirconium oxynitride thin film growth by rf sputtering[J]. Revista Mexicana De Física, 2012, 58(4): 328-334.
[26] KHAMSEH S. Synthesis and characterization of tung-sten oxynitride films deposited by reactive magnetron sputtering[J]. Journal of Alloys and Compounds, 2014, 611: 249-252.
[27] HUANG J H, LIN T C, YU G P. Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel[J]. Surface and Coatings Technology, 2011, 206(1): 107-116.
[28] HUANG J H, TSAI Z E, YU G P. Mechanical properties and corrosion resistance of nanocrystalline ZrNxOy coatings on AISI 304 stainless steel by ion plating[J]. Surface and Coatings Technology, 2008, 202(20): 4992-5000.
[29] 张冰烨, 袁妍妍, 涂昱淳, 等. 反应磁控溅射周期结构TiN/ZrNxOy多层膜的微结构与膜基结合力[J]. 江苏科技大学学报(自然科学版), 2021, 35(1): 30-35. [30] TRACHE A, MEININGER G A. Atomic force microscopy (AFM)[J]. Current Protocols in Microbiology, 2008, 8(1): 2C1-2C17.
[31] ZUO B, XU J H, LU G Y, et al. Microstructures, mechanical properties and corrosion resistance of TiN/AlN multilayer films[J]. Ceramics International, 2022, 48(8): 11629-11635.
[32] ZHANG H H, LI Z Q, HE W F, et al. Damage mechanisms evolution of TiN/Ti multilayer films with different modulation periods in cyclic impact conditions[J]. Applied Surface Science, 2021, 540: 148366.
[33] GONZÁLEZ-SEVILLA J E, BERUMEN J O, FLORES-MARTÍNEZ M, et al. Tribological study of TaTiN/TaTi multilayer films with hierarchical arrangement[J]. Wear, 2022, 498-499: 204337.
[34] SHI W B, LIU Y M, LI W H, et al. Effects of modulation ratio on the microstructure, mechanical and tribological properties of WB2/Cr multilayer films deposited by magnetron sputtering[J]. Ceramics International, 2021, 47(14): 19678-19686.
[35] JU H B, ZHOU R, LUAN J, et al. Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphol-ogy, structure and temperature-cycling tribological properties[J]. Materials & Design, 2022, 223: 111128.
计量
- 文章访问数: 42
- HTML全文浏览量: 2
- PDF下载量: 16