基于热加工图技术的10CrNi8MoV钢热加工工艺优化

Optimization of Hot Working Process for 10CrNi8MoV Steel based on Process ̄ ing Map Technology

  • 摘要: 采用Gleeble-3500热力模拟机对10CrNi8MoV钢进行高温压缩试验,获得其在不同温度、应变速率和应变值下的流变应力值,并建立了10CrNi8MoV钢的热加工图。结果表明:10CrNi8MoV钢较合适的热变形区域有2个,分别为变形温度在1 020~1 100 ℃、应变速率为0.001~0.1 s-1的中高温、中低应变速率区和变形温度在1 150~1 200 ℃、应变速率为3~10 s-1的高温、高应变速率区;10CrNi8MoV钢在上述2个工艺区域发生变形时均能获得均匀细小的再结晶组织。

     

    Abstract: High temperature compression test is carried out on the 10CrNi8MoV steel by using Gleeble-3500 thermo-mechanical simulator. The flow stresses of the 10CrNi8MoV steel under different temperatures, strain rates and strains are obtained, and its hot process map is established. The results indicate that the 10CrNi8MoV steel has two suitable hot deformation regions, which are the medium/high temperature and medium/low strain rate (1 020-1 100 ℃ deformation temperature and 0.001-0.1 s-1 strain rate) region, and the high temperature and high strain rate (1 150-1 200 ℃ deformation temperature and 3-10 s-1 strain rate) region. When the 10CrNi8MoV steel deforms in the above two regions, the microstructure is uniform and fine dynamically recrystallized grains are fine.

     

/

返回文章
返回