风电叶片前缘防护

叶维维, 苏雅丽, 李陈郭, 叶章基

叶维维, 苏雅丽, 李陈郭, 叶章基. 风电叶片前缘防护[J]. 材料开发与应用, 2023, 38(3): 82-87.
引用本文: 叶维维, 苏雅丽, 李陈郭, 叶章基. 风电叶片前缘防护[J]. 材料开发与应用, 2023, 38(3): 82-87.
YE Weiwei, SU Yali, LI Chenguo, YE Zhangji. Protection for Leading Edge of Wind Turbine Blade[J]. Development and Application of Materials, 2023, 38(3): 82-87.
Citation: YE Weiwei, SU Yali, LI Chenguo, YE Zhangji. Protection for Leading Edge of Wind Turbine Blade[J]. Development and Application of Materials, 2023, 38(3): 82-87.

风电叶片前缘防护

详细信息
    作者简介:

    叶维维,女,1994年生,硕士,工程师,主要从事船舶与工业等涂料研究。E-mail:yeweiwei12356@163.com

    通讯作者:

    叶章基,男,1969年生,博士,研究员,主要从事船舶防腐防污涂料及测试方法研究。E-mail:yezhangji725@163.com

  • 中图分类号: TB332

Protection for Leading Edge of Wind Turbine Blade

  • 摘要: 风能被认为是当今所有可用能源中最具有发展潜力的,已经成为新能源发电中不可或缺的一部分。风力机叶片是风力机的重要部件,对风力机的运行效率和使用寿命起着至关重要的作用。但风力发电场通常都建在具有高温或高寒、酸碱腐蚀和沙尘暴环境的地方,风力发电机组工作条件差,风电叶片的前缘由于线速度高,极易受到侵蚀。作者综述了影响风电叶片前缘防护的因素及前缘防护的保护方案,并提出了风电叶片前缘防护发展中所存在的问题。
    Abstract: Renewable energy based on wind energy is regarded as the most promising energy source of all energy sources available today. It has become an essential part of the new power supply. Wind turbine blades are crucial and relevant to the operating efficiency and service life of turbines. However, the working conditions of wind turbines are poor, and they are usually located in high or low temperatures, acid-base corrosion, and sandstorm environments. The blade's leading edge is highly prone to erode due to its high linear velocity. Here are summarized the factors affecting the leading-edge protection of wind turbine blades, and the protection scheme of the leading edge protection, and is put forward the problems existing in the development of the protection for the leading edge of the wind turbine blade protection.
  • [1]

    KARTHIKEYAN N, ANAND R B, SUTHAKAR T, et al. Materials, innovations and future research opportunities on wind turbine blades-insight review[J]. Environmental Progress & Sustainable Energy, 2019, 38(3): e13046.

    [2]

    NAZIR M S, ALI N, BILAL M, et al. Potential environmental impacts of wind energy development: a global perspective[J]. Current Opinion in Environmental Science & Health, 2020, 13: 85-90.

    [3]

    SUN X J, HUANG D G, WU G Q. The Current state of offshore wind energy technology development[J]. Energy, 2012, 41(1): 298-312.

    [4]

    DAI J C, YANG X, WEN L. Development of wind power industry in China: a comprehensive assessment[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 156-164.

    [5]

    CEN H T, TIAN W L, LI P W, et al. Simulation analysis on polyurethane coating of wind blade[J]. Journal of Shanghai Jiaotong University (Science), 2019, 24(4): 496-499.

    [6]

    HERRING R, DYER K, MARTIN F, et al. The increasing importance of leading edge erosion and a review of existing protection solutions[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109382.

    [7]

    CHEN J L, WANG J H, NI A Q. A review on rain erosion protection of wind turbine blades[J]. Journal of Coatings Technology and Research, 2019, 16(1): 15-24.

    [8] 王晓, 王华进, 赵薇, 等. 风电叶片涂料用树脂研究进展[J]. 表面技术, 2016, 45(6): 28-35.
    [9]

    CORTÉS E, SÁNCHEZ F, DOMENECH L, et al. Manufacturing issues which affect coating erosion performance in wind turbine blades[C]//AIP Conference Proceedings. Penang, Malaysia. Author(s), 2017: 1-6.

    [10]

    BRUNTON J H. Treatise on materials science and te-chnology: Rochester, Erosion of solid surfaces by the impact of liquid drops[M]. New York: Academic press, 1979, 186-248.

    [11]

    GRUNDWVRMER M, NUYKEN O, MEYER M, et al. Sol-gel derived erosion protection coatings against damage caused by liquid impact[J]. Wear, 2007, 263(1-6): 318-329.

    [12]

    ZHANG S Z, DAM-JOHANSEN K, NØRKJЛЕR S, et al. Erosion of wind turbine blade coatings-Design and analysis of jet-based laboratory equipment for performance evaluation[J]. Progress in Organic Coatings, 2015, 78: 103-115.

    [13]

    CORTÉS E, SÁNCHEZ F, O'CARROLL A, et al. On the material characterisation of wind turbine blade coatings: the effect of interphase coating-laminate adhesion on rain erosion performance[J]. Materials (Basel, Switzerland), 2017, 10(10): 1146.

    [14]

    GEORGE F, SCHMITT J. Report AFML-TR-79-4122: Liquid and solid particle impact erosion[R]. Ohio: Air Force Materials Laboratory, 1979.

    [15]

    SCHMITT G F. Report AFML-TR-71-197: Materials parameters that govern the rain erosion behavior of polymeric coatings and composites at subsonic velocities[R]. Ohio: Air Force Materials Laboratory, 1971.

    [16]

    PENG H X. Polyurethane nanocomposite coatings for aeronautical applications[M]//Multifunctional Polymer Nanocomposites. New York: CRC Press, 2010: 337-387.

    [17]

    ADLER W, MORRIS J W, WAHL N. Supersonic ra-in and sand erosion research: characterization and development of erosion resistant materials[R]. Air Force Materials Laboratory, 1972.

    [18]

    ENGEL O G. Report No. 53-192: Mechanism of rain erosion[R]. Fairbanks: Wright Air Development Center, 1953.

    [19]

    GODFREY M, SIEDERER O, ZEKONYTE J, et al. The effect of temperature on the erosion of polyurethane coatings for wind turbine leading edge protection[J]. Wear, 2021, 476: 203720.

    [20] 桂永强, 倪爱清, 王继辉. 风机叶片涂层雨蚀研究[J]. 应用力学学报, 2020, 37(1): 403-410.
    [21]

    AHMAD M, CASEY M, SVRKEN N. Experimental assessment of droplet impact erosion resistance of steam turbine blade materials[J]. Wear, 2009, 267(9-10): 1605-1618.

    [22]

    GOHARDANI O. Impact of erosion testing aspects on current and future flight conditions[J]. Progress in Aerospace Sciences, 2011, 47(4): 280-303.

    [23]

    KJЛЕRSIDE STORM B. Surface protection and coa-tings for wind turbine rotor blades[M]//Advances in Wind Turbine Blade Design and Materials. Amsterdam: Elsevier, 2013: 387-412.

    [24] 刘正伟. 一种风电叶片模内胶衣: CN106047112A[P]. 2018-12-28.
    [25]

    MISHNAEVSKY L Jr, HASAGER C B, BAK C, et al. Leading edge erosion of wind turbine blades: understanding, prevention and protection[J]. Renewable Energy, 2021, 169: 953-969.

    [26]

    TRUONG H. An experimental and computational st-udy on Co-cured metal-polymer matrix composite interfaces in high temperature hybrid laminates[D]. College Station: Texas A&M University, 2016.

    [27]

    SHIN K C, LEE J J. Prediction of the tensile load-bearing capacity of a co-cured single lap joint considering residual thermal stresses[J]. Journal of Adhesion Science and Technology, 2000, 14(13): 1691-1704.

  • 期刊类型引用(2)

    1. 徐利强,周晓亮,赵建立,方思明,刘梅,王鄯尧,宋佺珉. 风电叶片前缘保护涂料的耐雨蚀试验研究. 涂层与防护. 2025(01): 21-25 . 百度学术
    2. 许楠,张祺. 风电机组叶片前缘腐蚀问题及防护技术. 风能. 2024(03): 62-66 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  267
  • HTML全文浏览量:  10
  • PDF下载量:  18
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-03-29
  • 网络出版日期:  2023-07-09
  • 刊出日期:  2023-06-14

目录

    /

    返回文章
    返回