激光深熔焊接等离子体温度光谱测量对比

谢顺, 祝宝琦, 邹江林

谢顺, 祝宝琦, 邹江林. 激光深熔焊接等离子体温度光谱测量对比[J]. 材料开发与应用, 2023, 38(5): 70-74,85.
引用本文: 谢顺, 祝宝琦, 邹江林. 激光深熔焊接等离子体温度光谱测量对比[J]. 材料开发与应用, 2023, 38(5): 70-74,85.
XIE Shun, ZHU Baoqi, ZOU Jianglin. Comparison of Spectrometric Measurements of Plasma Temperature in Laser Penetration Welding[J]. Development and Application of Materials, 2023, 38(5): 70-74,85.
Citation: XIE Shun, ZHU Baoqi, ZOU Jianglin. Comparison of Spectrometric Measurements of Plasma Temperature in Laser Penetration Welding[J]. Development and Application of Materials, 2023, 38(5): 70-74,85.

激光深熔焊接等离子体温度光谱测量对比

基金项目: 

国家自然科学基金(52175375)

详细信息
    作者简介:

    谢顺,男,1996年生,博士研究生,主要从事激光与材料相互作用的研究。

    通讯作者:

    邹江林,男,1982年生,博士,副研究员,博士生导师,主要从事激光与材料相互作用、激光加工过程监测、激光加工新工艺、新方法及外围技术与系统等方面的研究。E-mail:zoujianglin1@163.com

  • 中图分类号: TG456

Comparison of Spectrometric Measurements of Plasma Temperature in Laser Penetration Welding

  • 摘要: 采用光谱仪探测CO2激光深熔焊接等离子体及光纤激光焊接羽辉的光谱信号,分别利用波尔兹曼图法和相对强度法计算获取CO2激光焊接等离子体的温度,并以较优的一种方法计算光纤激光羽辉温度。结果发现,对于同一个等离子体,采用相对强度法时,选择不同谱线获得的等离子体温度差异很大;当采用波尔兹曼图法时,使用不同谱线组合获得的等离子体温度非常接近。通过对两种方法获得结果的分析,认为采用波尔兹曼图法计算得到的等离子体温度精度更高,更具有可比性。而后采用波尔兹曼图法计算羽辉温度,发现光纤激光焊接羽辉辐射的谱线中连续谱强度不可忽略,与等离子体温度的计算略有不同。
    Abstract: The spectrum of the CO2 laser deep penetration welding plasma and fiber laser welding plume is recorded by using a spectrometer. Both the relative intensity method and the Boltzmann plot method are used to calculate the plasma temperature. The results show that, for the same plasma, very different temperatures are figured out with relative intensity method, when different peaks are chosen. However, the calculated plasma temperatures are very similar with Boltzmann plot method when different spectrum peaks are used. Comparison of the results indicates that the measured temperature is more accurate and reliable with the Boltzmann plot method. Then Boltzmann diagram method is used to calculate the plume temperature, and it is found out that the continuous spectrum intensity of the fiber laser welding plume radiation line cannot be ignored, which is slightly different from the calculation of the plasma temperature.
  • [1]

    SETO N, KATAYAMA S, MIZUTANI M, et al. Relationship between plasma and keyhole behavior during CO2 laser welding[C]//Proc SPIE 3888, High-Power Lasers in Manufacturing, 2000, 3888: 61-68.

    [2]

    SZYMANSKI Z, HOFFMAN J, KURZYNA J. Plasma plume oscillations during welding of thin metal sheets with a CW CO2 laser[J]. Journal of Physics D: Applied Physics, 2001, 34(2): 189-199.

    [3]

    POUEYO-VERWAERDE A, FABBRO R, DESHO-RS G, et al. Experimental study of laser-induced plasma in welding conditions with continuous CO2 laser[J]. Journal of Applied Physics, 1993, 74(9): 5773-5780.

    [4]

    SZYMANSKI Z, KURZYNA J, KALITA W. The sp-ectroscopy of the plasma plume induced during laser welding of stainless steel and titanium[J]. Journal of Physics D: Applied Physics, 1997, 30(22): 3153-3162.

    [5]

    HOFFMAN J, SZYMA SKI Z. Time-dependent spectroscopy of plasma plume under laser welding conditions[J]. Journal of Physics D: Applied Physics, 2004, 37(13): 1792-1799.

    [6]

    RIBIC B, BURGARDT P, DEBROY T. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma[J]. Journal of Applied Physics, 2011, 109(8): 1-10.

    [7]

    MILLER R, DEBROY T. Energy absorption by meta-lvapor-dominated plasma during carbon dioxide laser welding of steels[J]. Journal of Applied Physics, 1990, 68(5): 2045-2050.

    [8]

    SZYMANSKI Z, PERADZYNSKI Z, KURZYNA J, et al. Spectroscopic study of a supersonic jet of laser-heated argon plasma[J]. Journal of Physics D: Applied Physics, 1997, 30(6): 998-1006.

    [9]

    TU J F, INOUE T, MIYAMOTO I. Quantitative characterization of keyhole absorption mechanisms in 20 kW-class CO2 laser welding processes[J]. Journal of Physics D: Applied Physics, 2003, 36(2): 192-203.

    [10]

    LIU L M, HAO X F. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique[J]. Journal of Physics D: Applied Physics, 2008, 41(20): 205202.

    [11]

    KAWAHITO Y, KINOSHITA K, MATSUMOTO N, et al. Effect of weakly ionised plasma on penetration of stainless steel weld produced with ultra high power density fibre laser[J]. Science and Technology of Welding and Joining, 2008, 13(8): 749-753.

    [12]

    KAWAHITO Y, MATSUMOTO N, MIZUTANI M, et al. Characterisation of plasma induced during high power fibre laser welding of stainless steel[J]. Science and Technology of Welding and Joining, 2008, 13(8): 744-748.

    [13]

    SABBAGHZADEH J, DADRAS S, TORKAMANY M J. Comparison of pulsed Nd:YAG laser welding qualitative features with plasma plume thermal characteris-tics[J]. Journal of Physics D: Applied Physics, 2007, 40(4): 1047-1051.

    [14]

    LACROIX D, JEANDEL G, BOUDOT C. Spectrosc-opic characterization of laser-induced plasma created during welding with a pulsed Nd: YAG laser[J]. Journal of Applied Physics, 1997, 81(10): 6599-6606.

    [15]

    National Institute of Standards and Technology data-base. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

    [16]

    SATTMANN R, STURM V, NOLL R. Laser-induced breakdown spectroscopy of steel samples using multiple Q-switch Nd: YAG laser pulses[J]. Journal of Physics D: Applied Physics, 1995, 28(10): 2181-2187.

    [17]

    FUHR J R, MARTIN G A, WLESE W L, et al. Atomic transition probabilities for iron, cobalt, and nickel (a critical data compilation of allowed lines)[J]. Journal of Physical and Chemical Reference Data, 1981, 10(2): 305-566.

    [18]

    ZOU J L, XIAO R S, HUANG T, et al. Plume temperature diagnosis with the continuous spectrum and Wien’s displacement law during high power fiber laser welding[J]. Laser Physics, 2014, 24(10): 106007.

  • 期刊类型引用(0)

    其他类型引用(2)

计量
  • 文章访问数:  94
  • HTML全文浏览量:  10
  • PDF下载量:  12
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-05-22
  • 网络出版日期:  2023-11-06

目录

    /

    返回文章
    返回