Abstract:
In order to meet the demand for titanium alloy petroleum pipes under the harsh oil and gas exploitation environment, the TiB95 alloy is developed, which belongs to Al-Mo-Zr alloys. The effects of different heat treatment processes on the metallographic structure, mechanical properties and impact fracture morphologies of the TiB95 alloy petroleum pipes are studied by means of metallographic microscope, tensile testing machine, impact testing machine and scanning electron microscope. The results show that when the heat treatment temperature is 900 ℃, the TiB95 alloy petroleum pipes cooled at low rate (furnace cooling) have coarser structure, lower strength and higher toughness. When the cooling rate (air cooling) is the same, the α phase morphologies of the TiB95 alloy petroleum pipes heat treated at high temperature changes, the strength of the alloy reduces, and the elongation increases. The TiB95 alloy petroleum pipes with high strength and toughness can be obtained by using the 960 ℃,90 min,air cooling heat treatment process. The impact fracture surfaces of the TiB95 alloy petroleum pipes by different heat treatment processes are dimple morphology, which is ductile fracture.