Effect of Heat Treatment on Microstructure and Mechanical Properties of TiB95 Alloy Petroleum Pipes
-
摘要: 为满足苛刻油、气开采环境下对钛合金油井管的需求,开发了TiB95合金,该合金为Al-Mo-Zr系合金。采用金相显微镜、拉伸试验机、冲击试验机和扫描电镜等研究了不同热处理工艺的TiB95合金管材的金相组织、力学性能和冲击断口形貌。研究结果表明:TiB95合金管材在相同热处理温度下(900 ℃),冷却速率较慢(炉冷)时组织较粗大,强度较低,韧性较高;在相同冷却速率下(空冷),热处理温度较高时(960 ℃),α相形态发生改变,强度降低,伸长率升高,韧性显著提高。TiB95合金管材采用960 ℃、90 min、空冷热处理工艺处理时,可以获得较高的强韧性匹配。TiB95合金管材不同热处理工艺下的冲击断口形貌均为韧窝,为韧性断裂。Abstract: In order to meet the demand for titanium alloy petroleum pipes under the harsh oil and gas exploitation environment, the TiB95 alloy is developed, which belongs to Al-Mo-Zr alloys. The effects of different heat treatment processes on the metallographic structure, mechanical properties and impact fracture morphologies of the TiB95 alloy petroleum pipes are studied by means of metallographic microscope, tensile testing machine, impact testing machine and scanning electron microscope. The results show that when the heat treatment temperature is 900 ℃, the TiB95 alloy petroleum pipes cooled at low rate (furnace cooling) have coarser structure, lower strength and higher toughness. When the cooling rate (air cooling) is the same, the α phase morphologies of the TiB95 alloy petroleum pipes heat treated at high temperature changes, the strength of the alloy reduces, and the elongation increases. The TiB95 alloy petroleum pipes with high strength and toughness can be obtained by using the 960 ℃,90 min,air cooling heat treatment process. The impact fracture surfaces of the TiB95 alloy petroleum pipes by different heat treatment processes are dimple morphology, which is ductile fracture.
-
Keywords:
- titanium alloy pipe /
- heat treatment /
- microstructure /
- impact fracture
-
-
[1] 李冲, 陶欢, 宋德军, 等. 钛合金在高含硫化氢工况中的腐蚀性能研究[J]. 材料开发与应用, 2020, 35(6):19-23. [2] 刘强, 赵密锋, 祝国川, 等. 热处理对石油管材用Ti-6Al-4V-0.5Ni-0.05Ru钛合金组织和性能的影响[J]. 稀有金属材料与工程, 2021, 50(7):2557-2567. [3] 孙建刚, 宋德军. 国内外石油、天然气用钛合金研究及应用概况[J]. 材料开发与应用, 2019, 34(6):96-102. [4] 周晓锋, 孙宇, 张传友, 等. TP-Ti-110钢级TP-G2(Ti)特殊螺纹钛合金油管的研发[J]. 钢管, 2019, 48(1):20-23. [5] 何石磊, 骆鸿, 董超, 等. 钛合金在高温盐酸中腐蚀行为研究[J]. 焊管, 2021, 44(9):1-6. [6] 刘强, 惠松骁, 汪鹏勃, 等. 油气开采用钛合金石油管材料耐腐蚀性能研究[J]. 稀有金属材料与工程, 2020, 49(4):1427-1436. [7] SCHUTZ R W, WATKINS H B. Recent developments in titanium alloy application in the energy industry[J]. Materials Science and Engineering:A, 1998, 243(1-2):305-315.
[8] 胡辛禾. 钛合金钻杆:短半径水平钻井最佳选择[J]. 石油机械, 2000, 28(6):61. [9] GONZALEZ M, MASKOS K, HARGRAVE R, et al. Titanium alloy tubing for HPHT applications[C]//All Days. Denver, Colorado, USA. SPE, 2008.
[9] GONZALEZ M, MASKOS K, HARGRAVE R, et al. Titanium alloy tubing for HPHT applications[C]//All Days. Denver, Colorado, USA. SPE, 2008.
[10] 李周波, 赵勇, 高盟召, 等. 热处理工艺对钛合金油管组织与性能的影响[J]. 钢铁钒钛, 2021, 42(1):50-54.[ [10] 李周波, 赵勇, 高盟召, 等. 热处理工艺对钛合金油管组织与性能的影响[J]. 钢铁钒钛, 2021, 42(1):50-54. [11] 张明玉, 运新兵, 伏洪旺. 热处理冷却方式对TC10钛合金组织与性能的影响[J]. 金属热处理, 2022, 47(8):98-105. [12] 胡庚祥, 蔡珣, 戎咏华, 等. 材料科学与工程[M]. 上海:上海交通大学出版社, 2001. [13] 李文渊, 刘建荣, 陈志勇, 等. Ti60合金板材的室温强度与其显微组织和织构的关系[J]. 材料研究学报, 2018, 32(6):455-463. [14] 吴汐玥, 陈志勇, 程超, 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响[J]. 材料研究学报, 2019, 33(10):785-793. [15] 卢凯凯, 周立鹏, 李敏娜, 等. 强韧化热处理对TA15钛合金组织和性能的影响[J]. 材料热处理学报, 2020, 41(1):44-49. [16] 徐戊矫, 谭玉全, 龚利华, 等. 退火温度和冷却速率对TC4钛合金组织和性能的影响[J]. 稀有金属材料与工程, 2016, 45(11):2932-2936. [17] WU C, ZHAO Y Q, HUANG S X, et al. Microstructure tailoring and impact toughness of a newly developed high strength Ti-5Al-3Mo-3V-2Cr-2Zr-1Nb-1Fe alloy[J]. Materials Characterization, 2021, 175:111103.
计量
- 文章访问数: 133
- HTML全文浏览量: 47
- PDF下载量: 14