Effect of CMT+P Welding Current on Microstructure and Mechanical Properties of 5083 Aluminum Alloy Welded Joints
-
摘要: 采用不同焊接电流,对3 mm厚5083-H116铝合金板材进行CMT+P焊接试验,并对接头显微组织、拉伸性能、弯曲性能等进行检测。结果表明,焊接电流对接头力学性能和焊缝中心晶粒尺寸有显著影响;焊接电流增大,抗拉强度降低,焊缝中心晶粒尺寸增加。通过对CMT+P焊接参数进行调整,可以获得满足使用要求的焊接接头,抗拉强度281 MPa,达到母材的84.38%;屈服强度163 MPa,达到母材的67.92%;伸长率13.5%,达到母材的75%;焊缝中心为等轴晶,熔合线内侧为柱状晶。Abstract: CMT+P welding tests are carried out on 3 mm thick 5083-H116 aluminum alloy sheet at different welding currents, and the microstructure, tensile properties and bending properties of the joints are analyzed. The results show that the welding current has a significant effect on the mechanical properties of the joint and the grain size of weld center. When the welding current increases, the tensile strength decreases and the grain size of weld center increases. The welding joint that meets the using requirements can be obtained by adjusting the welding parameters of CMT+P. In this work, the optimal tensile strength, yield strength and elongation are 281 MPa, 163 MP and 67.92%, respectively, which are 84.38%, 13.5% and 75% of those of the base metal, respectively. The center of the weld is isometric crystal, and the inner side of the fusion line is columnar crystal.
-
Keywords:
- 5083 aluminum alloy /
- mechanical property /
- welding current /
- CMT+P welding
-
-
[1] WANG J M, YANG H D, DU M, et al.Corrosion mechanism of 5083 aluminum alloy in seawater containing phosphate[J].Journal of Ocean University of China, 2021, 20(2):372-382.
[2] GOSWAMI R, SPANOS G, PAO P S, et al.Precipitation behavior of the phase in Al-5083[J].Materials Science&Engineering A, 2010, 527(4-5):1089-1095.
[3] 褚少旗,周洋,张繁星,等.敏化时间对国产5083-H116铝合金组织与性能的影响[J].材料开发与应用, 2021, 36(5):16-19. [4] PéREZ-BERGQUIST S J, GRAY G T LII, CERRETA E K, et al.The dynamic and quasi-static mechanical response of three aluminum armor alloys:5059, 5083 and 7039[J].Materials Science and Engineering:A, 2011, 528(29-30):8733-8741.
[5] 宋燕利,彭易朋,王德鑫,等.铝合金中厚板单面焊双面成形模拟与试验研究[J].武汉理工大学学报, 2021, 43(5):26-33. [6] BACIOIU D, MELTON G, PAPAELIAS M, et al.Automated defect classification of aluminium 5083 TIG welding using HDR camera and neural networks[J].Journal of Manufacturing Processes, 2019, 45:603-613.
[7] 乔建毅,邵有发,阮野,等.铝合金6082和5083 MIG焊接头的微观组织和性能[J].材料导报, 2016, 30(24):94-97. [8] PICKIN C G, WILLIAMS S W, LUNT M.Characterisation of the cold metal transfer (CMT) process and its application for low dilution cladding[J].Journal of Materials Processing Technology, 2011, 211(3):496-502.
[9] WANG P, HU S, SHEN J, et al.Characterization the contribution and limitation of the characteristic processing parameters in cold metal transfer deposition of an Al alloy[J].Journal of Materials Processing Technology, 2017, 245:122-133.
[10] FROSTEVARG J, KAPLAN A F H, LAMAS J.Comparison of CMT with other arc modes for laser-arc hybrid welding of steel[J].Welding in the World, 2014, 58(5):649-660.
[11] WANG Y, ZHU Z, GOU G, et al.Arc characteristics and metal transfer behavior of CMT+P process for Q235 steel of titanium-steel composite plate[J].International Journal of Modern Physics B, 2019, 33:1940040(1-7).
[12] PANG J, HU S, SHEN J, et al.Arc characteristics and metal transfer behavior of CMT+P welding process[J].Journal of Materials Processing Technology, 2016, 238:212-217.
[13] GUNGOR B, KALUC E, TABAN E, et al.Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083-H111 and 6082-T651 aluminum alloys[J].Materials&Design, 2014, 54(2):207-211.
[14] JLA B, JSA B, SHA B, et al.Microstructure and Mechanical Properties of 6061/7N01 CMT+P Joints[J].Journal of Materials Processing Technology, 2019, 264:134-144.
[15] 任思蒙,刘庆永,毛晓东,等.6082-T6铝合金CMT+P焊与双脉冲MIG焊的接头组织及性能对比分析[J].轻合金加工技术, 2019, 47(10):62-65. [16] ÇEVIK B, KOC M.The effects of welding speed on the microstructure and mechanical properties of marine-grade aluminium (AA5754) alloy joined using MIG welding, Kovove Materialy-Metallic Meterials.2019, 57307-316
[17] MUTOMBO K, TOIT M D.Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy[J].International Journal of Fatigue, 2011, 33(12):1539-1547.
[18] ÇEVIK B, GüLENC B, The effect of welding speed on mechanical and microstructural properties of 5754 Al (AlMg3) alloy joined by laser welding, Materials Research Express, 2018, 5(8):086520(1-11).
[19] DILTHEY U, BRANDENBURG A, REICH F.Investigation of the strength and quality of aluminium laser-mig-hybrid welded joints[J].Welding in the World, 2006, 50(7-8):7-10.
[20] DUDZIK K.Mechanical properties of 5083, 5059 and 7020 aluminium alloys and their joints welded by MIG[J].Journal of Kones, 2011, 8(3):73-77.
[21] YüRüK A, EVIK B, KAHRAMAN N.Analysis of me-chanical and microstructural properties of gas metal arc welded dissimilar aluminum alloys (AA5754/AA6013)[J].Materials Chemistry and Physics, 2021, 273(2-3):125117.
[22] SAMIUDDIN M, Li J L, TAIMOOR M, et al.Investigation on the process parameters of TIG-welded Aluminum alloy through mechanical and microstructural characterization[J].Defence Technology, 2021, 17(4):15.
[23] AYDIN H, BAYRAM A, DURGUN I.The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints[J].Materials&Design, 2010, 31(5):2568-2577.
[24] LIU Y, WANG W, XIE J, et al.Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding[J].Materials Science&Engineering A, 2012, 549:7-13.
[25] RASTKERDAR E, SHAMANIAN M, SAATCHI A.Taguchi optimization of pulsed current GTA welding parameters for improved corrosion resistance of 5083 aluminum welds[J].Journal of Materials Engineering and Performance, 2013, 22(4):1149-1160.
计量
- 文章访问数: 215
- HTML全文浏览量: 51
- PDF下载量: 20