Mechanical Properties and Hydrogen Diffusion Analysis of Titanium Alloy Microstructure
-
摘要: 为了获得钛合金微结构组织不均匀性对氢扩散以及力学性能的影响,建立多晶体微结构模型,运用Voronoi图剖分原理生成随机晶粒,分析加载载荷、晶粒取向、晶粒大小和材料属性对微结构力学性能和氢扩散的影响。结果表明:载荷对氢扩散有促进作用,对应力集中无影响;晶体取向是微结构应力分布不均的主要原因,晶粒尺寸越大应力集中越严重;相同载荷下,β钛合金比α钛合金的应力集中更明显,且氢容易在β钛合金中富集。Abstract: In order to study the influence of microstructure heterogeneity of titanium alloy on hydrogen diffusion and mechanical properties, a polycrystalline microstructure model is established. The random grains are generated by the Voronoi diagram subdivision principle, and the influences of the microstructural mechanical properties and hydrogen diffusion on the loading load, grain orientation, grain size and material are analyzed. The results show that the load can promote the hydrogen diffusion and has no effect on the stress concentration. The crystal orientation is the main reason for the uneven stress distribution in the microstructure, and the larger the grain size, the more serious the stress concentration. Under the same load, the stress concentration in the β-titanium alloy is more obvious than that in the α-titanium alloy, and the hydrogen is more easily enriched in the β-titanium alloy.
-
Keywords:
- titanium alloy /
- microstructure /
- stress concentration /
- hydrogen diffusion
-
-
[1] 付亚荣, 谷胜群, 宋惠梅, 等. 钛合金管材在高含硫天然气开发中的应用现状[J]. 石油机械, 2018, 46(3): 116-124. [2] 陈守东, 卢日环, 孙建, 等. 晶粒尺寸效应对铜极薄带轧制变形机制影响的模拟研究[J]. 中国有色金属学报, 2018, 28(11): 2233-2241. [3] 温吉利, 华丽, 徐宏, 等. 2.25Cr-1Mo钢氢致裂纹扩展行为研究[J]. 腐蚀与防护, 2008, 29(3): 121-124. [4] 郎巧霖. 钛金属氢脆的计算模拟[D]. 青岛: 中国海洋大学, 2010. [5] NAGAO A, KURAMOTO S, ICHITANI K, et al. Visualization of hydrogen transport in high strength steels affected by stress fields and hydrogen trapping[J]. Scripta Materialia, 2001, 45(10): 1227-1232.
[6] 钟彬, 陈义庆, 高鹏, 等. 微观组织和氢陷阱对抗硫管氢扩散系数的影响[J]. 钢铁研究学报, 2020, 32(1): 81-87. [7] 侯双平. 微观组织及晶界结构对管线钢氢致开裂行为的影响[D]. 武汉: 武汉科技大学, 2020. [8] 范宇恒. 不锈钢微观组织结构对其氢脆性能的影响[D]. 合肥: 中国科学技术大学, 2019. [9] OHAERI E, EDUOK U, SZPUNAR J. Hydrogen related degradation in pipeline steel: a review[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14584-14617.
[10] SOFRONIS P, MCMEEKING R M. Numerical anal-ysis of hydrogen transport near a blunting crack tip[J]. Journal of the Mechanics and Physics of Solids, 1989, 37(3): 317-350.
[11] ZHANG W S, ZHANG Z L, ZHANG X W. Effects of self-induced stress in tubular membranes during hydrogen diffusion[J]. Journal of Alloys and Compounds, 2002, 336(1/2): 170-175.
[12] LEDBETTER H, OGI H, KAI S, et al. Elastic constants of body-centered-cubic titanium monocrystals[J]. Journal of Applied Physics, 2004, 95(9): 4642-4644.
[13] FISHER E S, RENKEN C J. Single-crystal elastic moduli and the hcp → bcc transformation in Ti, Zr, and Hf[J]. Physical Review, 1964, 135(2A): A482-A494.
计量
- 文章访问数: 258
- HTML全文浏览量: 80
- PDF下载量: 40