Study on Wave-absorbing Properties of Layer-by-layer Distributed Composite Thermal Insulation Materials with Different Contents of SmFeN/YSZ
-
摘要: 雷达检测技术的快速发展对发动机等热部件的吸波性能提出了更高的要求。常用的隔热材料钇锆氧(YSZ)没有吸波性能,目前采用在其中添加吸波剂的方式实现对雷达隐身。基于此,本研究通过增材制造技术,将不同质量比的吸波剂钐铁氮(SmFeN)和基体材料YSZ进行层状叠加,制备了具有垂直于入射电磁波的相界面的吸波体,构建出SmFeN/YSZ复合材料界面模型。研究结果表明,将YSZ粉末与SmFeN金属颗粒按照不同质量比分层堆叠后,形成的SmFeN/YSZ异质界面提高了材料的微波吸收性能。当YSZ与SmFeN质量比为1∶1时,其反射损耗值达到最小,为-54.498 dB,有效吸收频宽达到最大,为2.5 GHz。Abstract: The rapid development of radar detection technology has put forward higher requirements for the wave-absorbing properties of thermal components such as engines. The commonly used thermal insulation material yttria-stabilized zirconia oxygen (YSZ) does not have wave-absorbing property, and it is currently used to add wave-absorbing agent in the thermal insulation material to realize its stealth from radar. Based on that, we adopt the additive manufacturing technology to lamellarly distribute the lasamarium iron nitrogen (SmFeN) wave-absorbing agent with different mass ratios and heat-insulating coating material YSZ composites to construct a SmFeN/YSZ composite interface model, whose phase interface perpendicular to the incident electromagnetic wave. The results show that when the SmFeN metal particles and YSZ powders are hierarchically stacked in different ratios, the YSZ/SmFeN heterogeneous interfaces can improve the microwave absorption properties. When the mass ratio of YSZ to SmFeN is 1∶1, the minimum reflection loss value is -54.498 dB and the maximum effective absorption bandwidth is 2.5 GHz.
-
Keywords:
- SmFeN /
- YSZ /
- insulation coating /
- wave absorbing property
-
-
[1] 刘顺华, 刘军民, 董星龙,等. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007. [2] WANG X Y, LIAO J, DU R X, et al. Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping[J]. Journal of Colloid and Interface Science, 2021, 590: 186-198.
[3] ZIAEE M, CRANE N B. Binder jetting: a review of process, materials, and methods[J]. Additive Manufacturing, 2019, 28: 781-801.
[4] INOUE A, TAKEUCHI A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243-2267.
[5] 李伟, 郭家瑞, 左思源, 等. SmFeN稀土永磁材料的研究进展[J]. 材料科学, 2021(5): 649-664. [6] LI Y, GAO D, GUO Y F, et al. A temperature-responsive composite for adaptive microwave absorption[J]. Chemical Engineering Journal, 2022, 427: 131746.
[7] QIAN X A, ZHANG Y H, WU Z C, et al. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance[J]. Small, 2021, 17(30): e2100283.
[8] LI Z J, LIN H, WU S Y, et al. Rice husk derived porous carbon embedded with Co3Fe7 nanoparticles towards microwave absorption[J]. Composites Science and Technology, 2022, 229: 109673.
[9] XU D W, XIONG X H, CHEN P, et al. Superior co-rrosionresistant 3D porous magnetic graphene foa-mferrite nanocomposite with tunable electromagnetic wave absorption properties[J]. Journal of Magnetism and Magnetic Materials, 2019, 469: 428-436.
[10] WANG B C, ZHANG C, MU C P, et al. Enhanced electromagnetic wave absorption properties of NiCo2 nanoparticles interspersed with carbon nanotubes[J]. Journal of Magnetism and Magnetic Materials, 2019, 471: 185-191.
[11] JIANG X Y, WAN W H, WANG B, et al. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals[J]. Applied Surface Science, 2022, 572: 151320.
[12] LIU J L, ZHANG P, ZHANG X K, et al. Synthesis and microwave absorbing properties of La-doped Sr-hexaferrite nanopowders via sol-gel auto-combustion method[J]. Rare Metals, 2017, 36(9): 704-710.
[13] YANG W Y, ZHANG Y F, QIAO G Y, et al. Tuna-ble magnetic and microwave absorption properties of Sm1.5Y0.5Fe17-xSix and their composites[J]. Acta Materialia, 2018, 145: 331-336.
[14] MEENAR S, BHATTACHRYA S, CHATTERJEE R. Complex permittivity, permeability and microwave absorbing studies of (Co2-xMnx) U-type hexaferrite for X-band (8.2-12.4 GHz) frequencies[J]. MaterialsScienceand Engineering: B, 2010, 171(1-3): 133-138.
计量
- 文章访问数: 154
- HTML全文浏览量: 22
- PDF下载量: 33