10CrNi8MoV钢的拉伸塑性应变物理本构模型

仝智远, 宫旭辉

仝智远, 宫旭辉. 10CrNi8MoV钢的拉伸塑性应变物理本构模型[J]. 材料开发与应用, 2022, 37(5): 11-15.
引用本文: 仝智远, 宫旭辉. 10CrNi8MoV钢的拉伸塑性应变物理本构模型[J]. 材料开发与应用, 2022, 37(5): 11-15.
TONG Zhiyuan, GONG Xuhui. Physical Constitutive Model of Tensile Plastic Strain for 10CrNi8MoV Steel[J]. Development and Application of Materials, 2022, 37(5): 11-15.
Citation: TONG Zhiyuan, GONG Xuhui. Physical Constitutive Model of Tensile Plastic Strain for 10CrNi8MoV Steel[J]. Development and Application of Materials, 2022, 37(5): 11-15.

10CrNi8MoV钢的拉伸塑性应变物理本构模型

详细信息
    作者简介:

    仝智远,男,1996年生,硕士,主要从事船体钢性能评价。

  • 中图分类号: TG142

Physical Constitutive Model of Tensile Plastic Strain for 10CrNi8MoV Steel

  • 摘要: 研究了10CrNi8MoV钢不同温度和应变速率下的拉伸应力-应变曲线。根据位错动力学将流变应力分解为热激活应力和非热激活应力,忽略粘拽阻力的影响。通过对塑性变形过程的分析,在Kocks热激活方程中引入位错间距演化函数,并用线性强化模型描述非热激活应力的变化,建立了10CrNi8MoV钢的物理本构模型。该模型对10CrNi8MoV钢在低应变速率和较宽的温度范围内的塑性变形行为有较好的描述结果。
    Abstract: The tensile stress-strain curves of 10CrNi8MoV steel are obtained by controlling the temperature and the strain rate. The flow stress is decomposed into thermal activation stress and non-thermal activation stress according to dislocation dynamics, and the influence of viscous resistance is ignored. Based on the analysis of plastic deformation process, a dislocation spacing evolution function is introduced into Kocks thermal activation equation, and the change of non-thermal activation stress is described by linear strengthening model, so the physical constitutive model of 10CrNi8MoV steel is established. The model can well describe the plastic deformation behavior of 10CrNi8MoV steel in the condition of low strain rate and wide temperature range.
  • [1] 刘全坤. 材料成形基本原理[M]. 2版. 北京: 机械工业出版社, 2010.
    [2] 彭鸿博, 张宏建. 金属材料本构模型的研究进展[J]. 机械工程材料, 2012, 36(3): 5-10.
    [3]

    GUO W G, NEMAT-NASSER S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials, 2006, 38(11): 1090-1103.

    [4]

    NEMAT-NASSER S, GUO W G. Thermomechanical response of HSLA-65 steel plates: experiments and modeling[J]. Mechanics of Materials, 2005, 37(2-3): 379-405.

    [5]

    VOYIADJIS G Z, ALMASRI A H. A physically based constitutive model for fcc metals with applications to dynamic hardness[J]. Mechanics of Materials, 2008, 40(6): 549-563.

    [6]

    HULL D, BACON D J. Introduction to dislocations[J]. Materials Today, 2011, 14(10): 502.

    [7] 是晶, 张伟强, 郭金. 金属塑性变形的本构模型研究[J]. 材料导报, 2010, 24(4): 82-85.
    [8]

    CAILLARD D. Kinetics of dislocations in pure Fe. Part II. in situ straining experiments at low temp-erature[J]. ActaMaterialia, 2010, 58(9): 3504-3515.

    [9] 严靖园, 余倩. 温度对体心立方钼中位错行为影响的原位透射电镜研究[J]. 电子显微学报, 2020, 39(4): 343-349.
    [10]

    Kocks U F, Argon A S, Ashby M F. Thermodynamics and kinetics of slip[M]. England: Pergamon Press, 1975.

    [11] 潘晓霞, 余勇, 谭云, 等. FeCrNi合金静动态物理本构模型研究[J]. 力学学报, 2008, 40(3): 407-412.
    [12]

    NEMAT-NASSER S, LI Y L. Flow stress of f.c.c. polycrystals with application to OFHC Cu[J]. ActaMaterialia, 1998, 46(2): 565-577.

  • 期刊类型引用(1)

    1. 黄冬,魏梦飞,张玉祥,蒋颖,程彬. 12CrNi5MoV锻钢应变补偿型高温本构模型. 材料开发与应用. 2024(02): 81-88 . 本站查看

    其他类型引用(0)

计量
  • 文章访问数:  179
  • HTML全文浏览量:  68
  • PDF下载量:  25
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-12-20
  • 网络出版日期:  2022-11-11

目录

    /

    返回文章
    返回