Study on Strengthening and Toughening Mechanisms of Ti80 Alloy Based on Microstructure Regulation
-
摘要: Ti80合金是由我国自主创新研制的耐蚀可焊近α型钛合金,海洋装备对Ti80合金的强度、塑性和冲击韧性提出了更高要求。通过调控退火温度得到Ti80合金等轴、双态和魏氏三种典型组织,对其进行力学性能测试,并采用SEM及EBSD技术阐明其演变规律和强韧化机理。结果显示:等轴α相优异的协调变形能力使等轴组织和双态组织具有优异的塑性,交错分布的α集束的协调变形能力差导致魏氏组织的塑性最差;魏氏组织的冲击吸收能量最高,三种组织冲击性能的差异主要来源于裂纹扩展功的不同;双态组织中等轴α相具有优异的塑性变形能力,片层α相具有较好的偏折裂纹作用和一定的塑性变形能力,因此,相对曲折的裂纹扩展路径以及沿着裂纹路径的良好塑性变形使其具有最优异的强度-塑性-冲击韧性匹配。Abstract: Ti80 alloy is a corrosion-resistant weldable near-α titanium alloy independently developed by China. Marine equipment puts forward higher requirements for the strength, plasticity and impact toughness of Ti80 alloy. In this study, three typical microstructures of exquiaxial, duplex, and widmanstatten structures of Ti80 alloy are obtained by adjusting the annealing temperature, and the mechanical properties are tested. The evolution law and strengthening and toughening mechanism of Ti80 alloy are clarified by SEM and EBSD techniques. The results show that the excellent compatible deformation capability of the equiaxed α phase makes the equiaxed and bimorph structures have excellent plasticity, and that the poor compatible deformation capability of the interlaced α clusters leads to the poor plasticity of the Vermanchii structure. The impact energy absorbed by the Westmanstatten structure is the highest. The difference of the impact properties of the three structures is mainly due to the difference of crack propagation work. The α phase of the duplex structure has excellent plastic deformation ability, and the lamellar α phase has good crack deflection action and certain plastic deformation ability. The relatively tortuous crack propagation path and good plastic deformation along the crack path make the duplex structure have the best strength, plasticity, and impact toughness.
-
Keywords:
- Ti80 /
- titanium alloy /
- impact toughness /
- strengthening and toughening
-
-
[1] 赵永庆,常辉,李佐臣,等.西北有色院创新研制的船用钛合金[J].钛工业进展, 2003, 20(6):12-16. [2] 杨蓬勃.钛合金在船舶上的应用[J].广东造船, 2005, 24(3):30-32. [3] 赵永庆.我国创新研制的主要船用钛合金及其应用[J].中国材料进展, 2014, 33(7):398-404. [4] SU B X, WANG B B, LUO L S, et al. Tuning microstructure and enhancing corrosion property of Ti-6Al-3Nb-2Zr-1Mo alloy through electron beam surface melting[J]. Corrosion Science, 2022, 206:110520.
[5] SU B X, WANG B B, LUO L S, et al. Tuning microstructure and improving the corrosion resistance of a Ti-6Al-3Nb-2Zr-1Mo alloy via solution and aging treatments[J]. Corrosion Science, 2022, 208:110694.
[6] XU Y L, XU L Y, DING L, et al. Microstructure and microtexture evolution of hot-rolled Ti-6321 alloy at different post-annealing temperatures[J]. Journal of Alloys and Compounds, 2022, 902:163842.
[7] ZHOU D D, ZENG W D, XU J W, et al. Evolution of equiaxed and lamellar α during hot compression in a near alpha titanium alloy with bimodal microstructure[J]. Materials Characterization, 2019, 151:103-111.
[8] ZHANG W Y, FAN J K, HUANG H, et al. Creep anisotropy characteristics and microstructural crystallography of marine engineering titanium alloy Ti6321 plate at room temperature[J]. Materials Science and Engineering:A, 2022, 854:143728.
[9] FAN J K, ZHANG W Y, LI B B, et al. Crystallographic analysis of slip system activation in bimodal Ti-6Al-3Nb-2Zr-1Mo alloy under various dwell-fatigue loadings[J]. Materials Science&Engineering A, 2023, 865:144610.
[10] WANG Q W, REN J Q, WU Y K, et al. Comparative study of crack growth behaviors of fully-lamellar and bi-lamellar Ti-6Al-3Nb-2Zr-1Mo alloy[J]. Journal of Alloys and Compounds, 2019, 789:249-255.
[11] XU X F, TAYYE B A, WANG L, et al. Research on dynamic compression properties and deformation mechanism of Ti6321 titanium alloy[J]. Journal of Materials Research and Technology, 2020, 9(5):11509-11516.
[12] YAN Z W, WANG L, NING Z X, et al. Evolution of dislocations and deformation twins in Ti6321 titanium alloy under contact explosion[J]. Journal of Materials Research and Technology, 2023, 24:1070-1075.
[13] YAN Z W, WANG L, NING Z X, et al. Deformation behaviors and microstructure evolution of Ti6321 alloy under air blast loadings[J]. Journal of Materials Research and Technology, 2023, 24:5147-5158.
[14] YAN Z W, ZHOU Z, WANG L, et al. Research on mechanical response of Ti6321 titanium alloy after shocked by light gas gun[J]. Materials Letters, 2022, 314:131483.
[15] 陈海生,罗锦华,王文盛,等. Ti-6321钛合金棒材热变形及热处理工艺[J].稀有金属材料与工程, 2016, 45(11):2948-2952. [16] XU Y L, ZHANG B B. Effects of hydrogen as a solid solution element on the deformation behavior of a near-alpha titanium alloy[J]. Materials Science and Engineering:A, 2021, 815:141269.
[17] 郭凯. Ti6Al3Nb2ZrMo合金的组织与力学性能研究[D].秦皇岛:燕山大学, 2020. [18] REN J Q, QI W, ZHANG B B, et al. Charpy impact anisotropy and the associated mechanisms in a hot-rolled Ti-6Al-3Nb-2Zr-1Mo alloy plate[J]. Materials Science and Engineering:A, 2022, 831:142187.
[19] 汪启明,杨晶,陈海生,等.大规格Ti80合金棒材冲击韧性各向异性研究[J].钛工业进展, 2023, 40(5):9-14. [20] XIE B J, YU Z X, JIANG H Y, et al. Effects of surface roughness on interfacial dynamic recrystallization and mechanical properties of Ti-6Al-3Nb-2Zr-1Mo alloy joints produced by hot-compression bonding[J]. Journal of Materials Science&Technology, 2022, 96:199-211.
[21] HUANG S X, ZHAO Q Y, ZHAO Y Q, et al. Toughening effects of Mo and Nb addition on impact toughness and crack resistance of titanium alloys[J]. Journal of Materials Science&Technology, 2021, 79:147-164.
[22] LEI L, ZHAO Y Q, ZHAO Q Y, et al. Impact toughness and deformation modes of Ti-6Al-4V alloy with different microstructures[J]. Materials Science and Engineering:A, 2021, 801:140411.
计量
- 文章访问数: 151
- HTML全文浏览量: 7
- PDF下载量: 75