PMMA纳米孔泡沫的制备及发泡性能研究

于旎, 张毅, 彭维凯, 罗浩

于旎, 张毅, 彭维凯, 罗浩. PMMA纳米孔泡沫的制备及发泡性能研究[J]. 材料开发与应用, 2023, 38(2): 76-83.
引用本文: 于旎, 张毅, 彭维凯, 罗浩. PMMA纳米孔泡沫的制备及发泡性能研究[J]. 材料开发与应用, 2023, 38(2): 76-83.
YU Ni, ZHANG Yi, PENG Weikai, LUO Hao. Preparation and Foaming Properties of PMMA Nano-cellular Foam[J]. Development and Application of Materials, 2023, 38(2): 76-83.
Citation: YU Ni, ZHANG Yi, PENG Weikai, LUO Hao. Preparation and Foaming Properties of PMMA Nano-cellular Foam[J]. Development and Application of Materials, 2023, 38(2): 76-83.

PMMA纳米孔泡沫的制备及发泡性能研究

详细信息
    作者简介:

    于旎,女,1993年生,工程师,主要研究方向为纳米材料制备。E-mail:yuni0908zzu@163.com

  • 中图分类号: TB332

Preparation and Foaming Properties of PMMA Nano-cellular Foam

  • 摘要: 选用对于超临界CO2具有高吸附能力的聚甲基丙烯酸酯(PMMA)作为基体材料,通过超临界CO2间歇式发泡法,探究饱和阶段、发泡阶段参数以及CO2吸附率对PMMA泡沫结构参数的影响。结果表明,在一定范围内,当其他条件相同时,降低温度或增大压力均能增加CO2吸附率,在0 ℃、15 MPa条件下饱和48 h,PMMA中的CO2吸附率达到最大值35.72%。将CO2吸附率为35.72%的PMMA在40 ℃油浴中发泡30 s,可以获得泡孔密度为1.57×1015 个/cm3、泡孔平均尺寸为35.9 nm且分布均匀的PMMA纳米孔泡沫。
    Abstract: PMMA with high adsorption capacity for supercritical carbon dioxide is selected as the matrix material and foamed by supercritical CO2 foaming technology. The influences of saturation and foaming stage parameters and CO2 adsorption capacity on the structure parameters of the PMMA foam are studied. The results reveal both the low-temperature and high-pressure can increase the adsorption capacity of CO2, and that the mass fraction of CO2 in PMMA increases from 21.59% to 35.72%.After the PMMA with CO2 of 35.72% is foamed at 40 ℃ for 30 s, we can obtain the PMMA nano-cellular foam with the uniform cell size of 35.9 nm and cell density of 1.57×1 015.
  • [1] 周洪福, 王向东. 热塑性聚合物改性及其发泡材料[M]. 北京:化学工业出版社, 2020.
    [2] 邓小珍, 柳和生. 微孔(发泡)塑料的制备方法[J]. 轻工机械, 2006, 24(2):16-19.
    [3]

    FOREST C, CHAUMONT P, CASSAGNAU P, et al. Nanofoaming of PMMA using a batch CO2 process:influence of the PMMA viscoelastic behaviour[J]. Polymer, 2015, 77:1-9.

    [4] 姜玉. 聚乙烯醇缩甲醛/二氧化硅复合泡沫材料的制备及热性能研究[J]. 中国塑料, 2012, 26(2):41-45.
    [5] 李婷婷. PMMA/MWCNTs微孔发泡复合材料制备方法及电磁屏蔽性能研究[D]. 济南:山东大学, 2019.
    [6] 程平. 石墨烯/PMMA微发泡复合材料的制备及其性能研究[D]. 武汉:武汉理工大学, 2017.
    [7] 李妍凝, 刘智峰, 包锦标, 等. 超临界流体技术制备聚合物开孔发泡材料的研究进展[J]. 材料导报, 2015, 29(17):15-21.
    [8]

    FOREST C, CHAUMONT P, CASSAGNAU P, et al. CO2 nano-foaming of nanostructured PMMA[J]. Polymer, 2015, 58:76-87.

    [9] 蔡业彬, 国明成, 彭玉成, 等. 泡沫塑料加工过程中的气泡成核理论(Ⅰ):经典成核理论及述评[J]. 塑料科技, 2005, 33(3):11-16.
    [10] 姚小虎, 任会兰, 林荣, 等. 聚合物泡沫材料动态力学性能及其能量吸收研究[J]. 高压物理学报, 2012, 26(5):531-536.
    [11] 熊远禄. PMMA基纳米复合材料及其微发泡材料的制备与结构控制[D]. 武汉:武汉理工大学, 2012.
    [12] 张睿智. PMMA微孔泡沫的结构调控与宽应变率下力学响应行为研究[D]. 武汉:武汉理工大学, 2020.
    [13]

    HANDA Y D, ZHANG Z Y, WONG B. Solubility,diffusivity, and retrograde in PMMA-CO2, and development of sub-micron cellular structures[J]. Cellular Polymers, 2001, 20(1):1-16.

    [14]

    GUO H M, KUMAR V. Some thermodynamic and kinetic low-temperature properties of the PC-CO2 system and morphological characteristics of solid-state PC nanofoams produced with liquid CO2[J]. Polymer, 2015, 56:46-56.

    [15]

    COSTEUX S, ZHU L B. Low density thermoplastic nanofoams nucleated by nanoparticles[J]. Polymer, 2013, 54(11):2785-2795.

    [16]

    GUO H M. Solid-state polymer nanofoams[D]. Seattle, WA, USA:University of Washington, 2015.

计量
  • 文章访问数:  144
  • HTML全文浏览量:  22
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 网络出版日期:  2023-05-05

目录

    /

    返回文章
    返回