Study on Parameter Sensitivity of Equivalent Elastic Modulus of CFRP Symmetric Laminates
-
摘要: 实际工程结构设计中往往将复合材料层合板看成均匀的各向异性板,并用等效弹性模量来表征层合板的刚度。为便于表征复合材料层合板的弹性性能,本研究从理论计算和ANSYS ACP仿真模拟两方面研究单层工程弹性常数与刚度系数的关系、[0/90]S正交对称层合板的等效弹性模量、准各向同性层合板的等效弹性模量和铺层顺序对对称层合板等效弹性模量的影响。结果表明,单层工程弹性常数与刚度系数有较为简单的对应关系;[0/90]S正交对称层合板的等效弹性模量约为单层正轴弹性模量EL与ET之和的一半;准各向同性层合板的等效弹性模量约为EL与ET之和的三分之一;改变铺层顺序后,层合板的等效弹性模量没有发生变化,但对层合板的弯曲刚度有较大影响;并用理论验证有限元解法的合理性,为复合材料层合板的应用设计提供了理论和仿真模拟指导。Abstract: Composite laminates are often regarded as homogeneous anisotropic plates in practical engineering structure design, and the stiffness of laminates is characterized by equivalent elastic modulus. In order to characterize the elastic properties of composite laminates, the relationship between engineering constant and stiffness coefficient of the single-layer material, the equivalent elastic modulus of [0/90]S orthogonal symmetrical laminates, the equivalent elastic modulus of quasi-isotropic laminates and the effect of stacking sequence on the equivalent elastic modulus of symmetrical laminates are studied by theoretical calculation and ANSYS ACP simulation. It is fount out that there is a simple correspondence between the single-layer engineering elastic constant and stiffness coefficient. The equivalent elastic modulus of [0/90]S orthogonal symmetric laminates is about half of the sum of single-layer on-axis engineering constants EL and ET on the main directions. The equivalent elastic modulus of the quasi-isotropic laminate is about one-third of the sum EL and ET on the main directions. The equivalent elastic modulus of laminated plate does not change after changing the ply drop order, but the ply drop order has a great influence on the bending stiffness of laminated plate. The rationality of the finite element method is verified by the theoretical calculation. This study can provide theoretical and simulation guidance for the application design of composite laminates.
-
Keywords:
- ANSYS ACP /
- simulation /
- symmetric laminate /
- equivalent modulus of elasticity
-
-
[1] 崔旭,王祖昊. CFRP层合板力学性能数值模拟的研究进展[J].航空制造技术, 2023, 66(15):60-70. [2] 刘嘉鸣,全东,赵国群.航空复合材料连接成形技术研究进展[J].机械工程学报, 2023, 59(20):119-142. [3] 王新宇,谷卫敏,徐中皓,等.碳纤维复合材料导流罩轻量化设计技术研究[J].汽车工艺与材料, 2023(7):52-58. [4] 蒋持平.预测纤维复合材料有效模量的分级模型[J].复合材料学报, 1998, 15(2):120-130. [5] 徐光磊,杨庆平,阮文俊,等.考虑混杂效应时纤维混杂缠绕筒三维等效弹性模量的理论估算和试验研究[J].复合材料学报, 2012, 29(4):204-209. [6] 何芳,王玉林,万怡灶,等.三维编织超高分子量聚乙烯纤维/碳纤维/环氧树脂混杂复合材料力学行为及混杂效应[J].复合材料学报, 2008, 25(6):52-58. [7] 韩新宇.基于有限元分析方法的储罐复合材料涂层修复评估技术[J].科技创新导报, 2019, 16(22):103-104. [8] 矫桂琼,贾普荣.复合材料力学[M].西安:西北工业大学出版社, 2008. [9] 赵立杰,李凯,常莹莹,等.复合材料机翼前缘柔性机构拓扑优化设计[J].机械设计与制造, 2020(9):75-79. [10] 刘文庆,姜秉元.对称复合材料层板弹性模量和泊松比的计算[J].宇航材料工艺, 2003, 33(3):53-56. [11] 杨智勇,解永杰,张建宝,等.薄壁曲面复合材料层合板成型工艺参数与形面精度影响规律[J].宇航材料工艺, 2021, 51(6):49-53.
计量
- 文章访问数: 200
- HTML全文浏览量: 20
- PDF下载量: 22