High Temperature Constitutive Equation Considering Strain Compensation of 12CrNi5MoV Forged Steel
-
摘要: 为优化12CrNi5MoV锻钢的锻造工艺和组织调控,使用Gleeble-3500热力模拟试验机,采用单道次压缩试验对12CrNi5MoV锻钢在变形温度为850~1 200 ℃,应变速率为0.1~0.001 s-1下的热变形行为进行研究并建立高温本构模型。结果表明:在较高的温度和较低的应变速率下,12CrNi5MoV锻钢发生动态再结晶;在较低的温度和较高的应变速率下,12CrNi5MoV锻钢只部分发生或未发生再结晶。根据压缩曲线,建立了12CrNi5MoV锻钢的Arrhenius高温本构模型,其平均绝对相对误差为14.8 %;而考虑应变补偿建立的12CrNi5MoV锻钢的Arrhenius高温本构模型精度较高,其平均绝对相对误差为6.1 %,相关系数为0.991。
-
关键词:
- 热模拟 /
- 高温本构模型 /
- 应变补偿 /
- 12CrNi5MoV锻钢
Abstract: The Gleeble-3500 thermal simulation tester is employed to investingate the thermal deformation behaviour of 12CrNi5MoV forged steel at deformation temperatures of 850-200 ℃ and strain rates of 0.1-0.001 s-1 by using a single-pass compression. The results show that dynamic recrystallisation occurs in 12CrNi5MoV forged steel at high temperatures and low strain rates, and that the recrystallisation doesn't or only partially occurs in 12CrNi5MoV forged steel at low temperatures and high strain rates. Based on the compression curve, the Arrhenius high-temperature principal model of 12CrNi5MoV forged steel is established, and its average relative error is 14.8 %; the Arrhenius high-temperature principal model of 12CrNi5MoV forged steel, which is established by taking strain compensation into consideration, has higher accuracy, with the average relative error 6.1 % and the correlation coefficient of 0.991. -
-
[1] 贺小毛. 1Cr12Ni3Mo2VN核电特大型叶片省力成形方法及组织控制[D]. 北京:机械科学研究总院, 2017. [2] 叶丽燕. 大型核电转子用25Cr2Ni4MoV钢锻造及热处理过程组织演化研究[D]. 北京:机械科学研究总院, 2020. [3] 仝智远, 宫旭辉. 10CrNi8MoV钢的拉伸塑性应变物理本构模型[J]. 材料开发与应用, 2022, 37(5):11-15. [4] SABOKPA O, ZAREI-HANZAKI A, ABEDI H R, et al. Artificial neural network modeling to predict the high temperature flow behavior of an AZ81 magnesium alloy[J]. Materials & Design, 2012, 39(8):390-396.
[5] LI M Q. Modeling of microstructure during hot work-ing process by ANN[C]. In:Proceedings of the International Conference on AMT'99. USA:New York, 1999.
[6] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48.
[7] ZENER C, HOLLOMON J H. Effect of strain rate up-on plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[8] 田宪华, 闫奎呈, 赵军, 等. GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程, 2022, 33(7):872-881. [9] JONAS J J, SELLARS C M, MCG TEGART W J. Strength and structure under hot-working conditions[J]. International Materials Reviews, 1969, 14(1):1-24.
[10] 权思佳, 宋克兴, 张彦敏, 等. 基于MATLAB的Ti80合金热变形行为及热加工图[J]. 稀有金属材料与工程, 2019, 48(11):3600-3607. [11] 张静, 蒋春霞, 乔帮威. 14Cr17Ni2钢高温变形行为及本构方程的研究[J]. 热加工工艺, 2018, 47(14):38-43. [12] 武宇, 宜楠, 乔慧娟, 等. Nb10Zr合金高温变形应变补偿型本构关系模型[J]. 稀有金属材料与工程, 2013, 42(10):2117-2122. [13] 牛继承, 王任甫, 袁亚民, 等. 超壁厚12CrNi5MoV钢锻件组织与力学性能研究[J]. 热加工工艺, 2010, 39(21):31-33. [14] PRASAD Y, RAO K, SASIDHARA S. Hot working gu-ide:A compendium of processing maps(Second edition.)[M]. Materials Park, Ohio:ASM Interna-tional, 2015.
-
期刊类型引用(1)
1. 高兴健,刘鑫,罗健,王文礼. DP1180钢的热变形Arrhenius本构模型. 精密成形工程. 2024(11): 108-116 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 152
- HTML全文浏览量: 81
- PDF下载量: 15
- 被引次数: 2