平面光极成像测量方法及应用研究进展

陈婷婷, 魏午, 石薇, 韩冬雪, 韩恩厚

陈婷婷, 魏午, 石薇, 韩冬雪, 韩恩厚. 平面光极成像测量方法及应用研究进展[J]. 材料开发与应用, 2024, 39(5): 109-116.
引用本文: 陈婷婷, 魏午, 石薇, 韩冬雪, 韩恩厚. 平面光极成像测量方法及应用研究进展[J]. 材料开发与应用, 2024, 39(5): 109-116.
CHEN Tingting, WEI Wu, SHI Wei, HAN Dongxue, HAN Enhou. Research Progress on Imaging Measurement Methods and Application of Planar Optode[J]. Development and Application of Materials, 2024, 39(5): 109-116.
Citation: CHEN Tingting, WEI Wu, SHI Wei, HAN Dongxue, HAN Enhou. Research Progress on Imaging Measurement Methods and Application of Planar Optode[J]. Development and Application of Materials, 2024, 39(5): 109-116.

平面光极成像测量方法及应用研究进展

基金项目: 

国家重点研发计划(2021YFB3702203、2022YFB3707502)

详细信息
    作者简介:

    陈婷婷,女,硕士,研究方向为光电化学传感器。E-mail:chentingting0306@163.com

    通讯作者:

    石薇,博士,副研究员,主要从事工程材料腐蚀与防护、腐蚀电化学领域相关研究。E-mail:wshi@icost.ac.cn

  • 中图分类号: TQ591

Research Progress on Imaging Measurement Methods and Application of Planar Optode

  • 摘要: 近年来,基于荧光传感原理的平面光极技术因有着高时空分辨率、原位实时监测等优势,在海洋、湖泊、植物根系、水体-沉积物界面等领域得到广泛应用。本研究介绍了平面光极发光成像的基本原理、系统组成和成像测量方法,分析了平面光极成像的参数特性,并总结了平面光极成像的特点,旨在为平面光极系统的搭建和测量方法的选择提供基本思路,为平面光极技术在未来海洋环境、地球化学等领域的研究和应用提供一定的参考价值。
    Abstract: In recent years, planar optode technique based on the principle of fluorescence sensing has been widely used in the fields of marine environment, lakes, plant roots, and water-sediment interfaces due to its advantages of high spatial resolution and in-situ real-time monitoring. In this paper, the basic principle, system components, and imaging measurement methods of planar optode imaging are introduced, the parameter characteristics of planar optode imaging are analyzed and the imaging characteristics summarized. This work aims to provide references for the system construction of planar optode and selection of measurement methods, and provide insights for the research and application of planar optode technique in fields like marine environment and geochemistry.
  • [1]

    GLUD R N, RAMSING N B, GUNDERSEN J K, et al. Planar optrodes: a new tool for fine scale measurements of two-dimensional O2 distribution in benthic communities[J]. Marine Ecology Progress Series, 1996, 140: 217-226.

    [2]

    HULTH S, ALLER R C, ENGSTRÖM P, et al. A pH plate fluorosensor (optode) for early diagenetic studies of marine sediments[J]. Limnology and Oceanography, 2002, 47(1): 212-220.

    [3]

    DERINKUYU S, ERTEKIN K, OTER O, et al. Fiber optic pH sensing with long wavelength excitable Schiff bases in the pH range of 7.0-12.0[J]. Analytica Chimica Acta, 2007, 588(1): 42-49.

    [4]

    arene for dual colorimetric Ag+ and Hg2+ detection[J]. Analytica Chimica Acta, 2020, 1104: 147-155.

    [4]

    JIANG Z K, YU X S, HAO Y Y. Design and fabrication of a ratiometric planar optode for simultaneous imaging of pH and oxygen[J]. Sensors, 2017, 17(6): 1316.

    [5] 姜子可, 于新生, 靳卫卫. 雨滴对水-气界面溶解氧与pH扩散影响的平面光极观测方法[J]. 海洋学报, 2018, 40(7): 134-42
    [6] 胡璇, 韩超, 方文, 等. 平板光极技术的基本原理及其在环境中的应用[J]. 环境化学, 2019, 38(4): 861-875.
    [7] 冉洪芋, 叶馨, 朱晓艳, 等. 平面光极基本原理及其在土壤微观异质性研究中的应用[J]. 土壤, 2021, 53(5): 916-928.
    [8]

    CLARKE J S, ACHTERBERG E P, CONNELLY D P, et al. Developments in marine pCO2 measurement technology; towards sustained in situ observations[J]. TrAC Trends in Analytical Chemistry, 2017, 88: 53-61.

    [9]

    BORISOV S M, KLIMANT I. Blue LED excitable tem-perature sensors based on a new europium(III) chelate[J]. Journal of Fluorescence, 2008, 18(2): 581-589.

    [10]

    PHICHI M, IMYIM A, TUNTULANI T, et al. Pape-rbased cation-selective optode sensor containing benzothiazole calix

    [11]

    GOLCS Á, DARGÓ G, BALOGH G T, et al. Develop-ment of a microplate-format direct optode sensor for ultra-high-throughput environmental and wastewater monitoring of Pb2+[J]. Analytica Chimica Acta, 2021, 1167: 338586.

    [12]

    CAO Z R, ZHU Q Z, ALLER R C, et al. A fluorosensor for two-dimensional measurements of extracellular enzyme activity in marine sediments[J]. Marine Chemistry, 2011, 123(1-4): 23-31.

    [13]

    LI C, DING S M, YANG L Y, et al. Planar optode: a two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil[J]. Earth-Science Reviews, 2019, 197: 102916.

    [14]

    GLUD R N, TENGBERG A, KÜHL M, et al. An in situ instrument for planar O2 optode measurements at benthic interfaces[J]. Limnology and Oceanography, 2001, 46(8): 2073-2080.

    [15]

    HAKONEN A, HULTH S, DUFOUR S. Analytical performance during ratiometric long-term imaging of pH in bioturbated sediments[J]. Talanta, 2010, 81(4-5): 1393-1401.

    [16]

    SANTNER J, LARSEN M, KREUZEDER A, et al. Two decades of chemical imaging of solutes in sediments and soils: a review[J]. Analytica Chimica Acta, 2015, 878: 9-42.

    [17]

    OGURI K, KITAZATO H, GLUD R N. Platinum octaetylporphyrin based planar optodes combined with an UV-LED excitation light source: an ideal tool for high-resolution O2 imaging in O2 depleted environments[J]. Marine Chemistry, 2006, 100(1-2): 95-107.

    [18]

    LARSEN M, BORISOV S M, GRUNWALD B, et al. A simple and inexpensive high resolution color ratiometric planar optode imaging approach: application to oxygen and pH sensing[J]. Limnology and Oceanography: Methods, 2011, 9(9): 348-360.

    [19]

    KLIMANT I, MEYER V, KÜHL M. Fiber-optic oxygen microsensors, a new tool in aquatic biology[J]. Limnology and Oceanography, 1995, 40(6): 1159-1165.

    [20]

    CHU C S, SYU J J. Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper[J]. Applied Optics, 2017, 56(4): 1225-1231.

    [21]

    ZHU Q Z, ALLER R C, FAN Y Z. A new rat-iometric, planar fluorosensor for measuring high resolution, twodimensional pCO2 distributions in marine sedi-ments[J]. Marine Chemistry, 2006, 101(1-2): 40-53.

    [22]

    BORISOV S M, SEIFNER R, KLIMANT I. A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature[J]. Analytical and Bioanalytical Chemistry, 2011, 400(8): 2463-2474.

    [23]

    LIEBSCH G, KLIMANT I, FRANK B, et al. Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors[J]. Applied Spectroscopy, 2000, 54(4): 548-559.

    [24]

    HOLST G, KOHLS O, KLIMANT I, et al. A modular luminescence lifetime imaging system for mapping oxy-gen distribution in biological samples[J]. Sensors and Actuators B: Chemical, 1998, 51(1-3): 163-170.

    [25]

    WALLACE A M. Greyscale image processing for industrial applications[J]. Image and Vision Computing, 1983, 1(4): 178-188.

    [26]

    HAAS A F, GREGG A K, SMITH J E, et al. Visualization of oxygen distribution patterns caused by coral and algae[J]. PeerJ, 2013, 1: e106.

    [27]

    CHRISTEL W, ZHU K, HOEFER C, et al. Spatiotemporal dynamics of phosphorus release, oxygen consumption and greenhouse gas emissions after localised soil amendment with organic fertilisers[J]. The Science of the Total Environment, 2016, 554-555: 119-129.

    [28]

    SONG A, PARUS S, KOPELMAN R. High-performance fiber-optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye[J]. Analytical Chemistry, 1997, 69(5): 863-867.

    [29]

    KERMIS H R, KOSTOV Y, HARMS P, et al. Dual excitation ratiometric fluorescent pH sensor for noninvasive bioprocess monitoring: development and application[J]. Biotechnology Progress, 2002, 18(5): 1047-1053.

    [30]

    ZHU Q Z, ALLER R C, FAN Y Z. Highperfor-mance planar pH fluorosensor for two-dimensional pH measurements in marine sediment and water[J]. Environmental Science & Technology, 2005, 39(22): 8906-8911.

    [31]

    STAHL H, GLUD A, SCHRÖDER C R, et al. Time-resolved pH imaging in marine sediments with a luminescent planar optode[J]. Limnology and Oceanography: Methods, 2006, 4(10): 336-345.

    [32]

    GLUD R N, BERG P, STAHL H, et al. Benthic carbon mineralization and nutrient turnover in a Scottish Sea loch: an integrative in situ study[J]. Aquatic Geochemistry, 2016, 22(5): 443-467.

    [33]

    SCHROEDER C R, NEURAUTER G, KLIMANT I. Luminescent dual sensor for time-resolved imaging of pCO2 and pO2 in aquatic systems[J]. Microchimica Acta, 2007, 158(3): 205-218.

    [34]

    DRAXLER S, LIPPITSCH M E, KLIMANT I, et al. Effects of polymer matrixes on the time-resolved luminescence of a ruthenium complex quenched by oxygen[J]. The Journal of Physical Chemistry, 1995, 99(10): 3162-3167.

    [35]

    BORISOV S M, NUSS G, KLIMANT I. Red lightexcitable oxygen sensing materials based on platinum(II) and palladium(II) benzoporphyrins[J]. Analytical Chemistry, 2008, 80(24): 9435-9442.

    [36]

    SCHRÖDER C R, WEIDGANS B M, KLIMANT I. pH Fluorosensors for use in marine systems[J]. Analyst, 2005, 130(6): 907-916.

    [37]

    PRECHT E, FRANKE U, POLERECKY L, et al. Oxygen dynamics in permeable sediments with wave-driven pore water exchange[J]. Limnology and Oceangraphy,2004, 49(3): 693-705.

    [38]

    RUDOLPH N, VOSS S, MORADI A B, et al. Spa-tiotemporal mapping of local soil pH changes induced by roots of lupin and soft-rush[J]. Plant and Soil, 2013, 369(1): 669-680.

计量
  • 文章访问数:  47
  • HTML全文浏览量:  0
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-14

目录

    /

    返回文章
    返回