甲板分段焊接变形仿真与控制

丁鹏龙, 成应晋, 何亮

丁鹏龙, 成应晋, 何亮. 甲板分段焊接变形仿真与控制[J]. 材料开发与应用, 2023, 38(1): 9-16.
引用本文: 丁鹏龙, 成应晋, 何亮. 甲板分段焊接变形仿真与控制[J]. 材料开发与应用, 2023, 38(1): 9-16.
DING Penglong, CHENG Yingjin, HE Liang. Numerical Simulation and Control of Block Welding Deformation of Large Steel Deck[J]. Development and Application of Materials, 2023, 38(1): 9-16.
Citation: DING Penglong, CHENG Yingjin, HE Liang. Numerical Simulation and Control of Block Welding Deformation of Large Steel Deck[J]. Development and Application of Materials, 2023, 38(1): 9-16.

甲板分段焊接变形仿真与控制

详细信息
    作者简介:

    丁鹏龙,男,1988年生,主要从事焊接研究。

  • 中图分类号: TG404

Numerical Simulation and Control of Block Welding Deformation of Large Steel Deck

  • 摘要: 采用热弹塑性有限元方法开展了甲板分段焊接数值仿真,基于三维Shell单元和双椭球焊接热源模型获得了结构温度变化和应力场,得到了甲板分段焊接变形及残余应力分布特点,同时探究了纵向和横向型材15种焊接装配顺序以及3种甲板分段拘束形式对残余应力和焊接变形的影响规律。结果表明,所设计的对称交替焊接方法对应的焊接变形最小,即先从船舯向舷侧焊接纵骨,再从中间向两端交替焊接横向桁材,最后从船舯向舷侧焊接纵向桁材;在甲板分段边缘和中心施加压条约束可获得变形控制与工作量的最佳平衡;通过优化焊接顺序和约束方式,可有效实现大型甲板焊接精度控制。
    Abstract: The welding deformation of large steel deck blocks is studied by the thermal elastic plastic finite element method. The change of the structure and stress field can be obtained based on the 3D Shell element and the double ellipsoid heat source model, and then the welding deformation of large steel deck blocks and the residual stress distribution can be acquired. The influences of different welding sequences and fixture arrangements of the deck bocks on the residual stress and the welding deformation are studied. The results show that the deformation caused by the symmetry alternant welding method is the smallest. The welding deformation and the amount of work are both small when putting battens to the edge and center of the deck block. By optimizing the welding sequence and fixture arrangement, the welding of the large steel deck can be accurately controlled.
  • [1] 吴润辉,王永兴,张波,等.船舶焊接工艺[M].哈尔滨:哈尔滨工程大学出版社, 1996:298-299.
    [2]

    MURAKAWA H, DENG D A, MA N S, et al. Applications of inherent strain and interface element to simulation of welding deformation in thin plate structures[J]. Computational Materials Science, 2012, 51(1):43-52.

    [3] 王阳.大型复杂船体结构焊接变形分析方法的研究及应用[D].上海:上海交通大学,2015.
    [4] 周宏,罗宇,蒋志勇,等.基于ANSYS的船舶复杂结构焊接变形预测研究[J].中国造船, 2010, 51(2):57-67.
    [5] 史雄华,牛业兴,向生,等.船体结构焊接变形的预测与控制研究进展[J].造船技术, 2019(1):1-6.
    [6] 任帅.船体典型构件焊接工艺仿真及分段装焊变形预测研究[D].镇江:江苏科技大学, 2017.
    [7]

    MASUBUCHI K. Analysis of welded structures:residual stresses, distortion, and their consequences[M]. Oxford:Pergamon Press, 1980.

    [8] 李磊,任帅,王鹏宇,等.大型船体舷侧分段装焊顺序仿真及其变形预测研究[J].热加工工艺, 2018, 47(23):206-211.
    [9] 李婧.大型船体焊接变形仿真技术研究及其应用:50000T多用途船货舱双层底结构焊接变形预测[D].上海:上海交通大学, 2011.
    [10] 黄振华.船体型材对接焊的焊接顺序优化研究[D].大连:大连理工大学, 2009.
    [11] 沈济超.大型船体结构焊接变形热弹塑性有限元数值模拟方法研究[D].上海:上海交通大学, 2015.
    [12] 曾阳.船体板架结构焊接变形预测控制及影响因素研究[D].哈尔滨:哈尔滨工程大学, 2015.
    [13] LI J, GUAN Q, GUO D, et al. Effects of distance between arc and heat sink on stress and distortion in DC-LSND welding technology[J].中国焊接, 2007(3):16.
    [14]

    MICHALERIS P, DANTZIG J, TORTORELLI D. M-inimization of welding residual stress and distortion in large structures:finite element analysis, analysis sensitivity analysis and nonlinear programming are implemented to investigate thermal tensioning[J]. Welding Journal, 1999(11):78.

    [15]

    DEO M V, MICHALERIS P. Mitigation of welding induced buckling distortion using transient thermal tensioning[J].Science and Technology of Welding and Joining, 20038(1):49-54.

    [16] 钟华,佟新伟,程文韬,等.大型纵向桁材式基座焊接变形仿真与控制[J].材料开发与应用, 2021, 36(1):71-76.
  • 期刊类型引用(2)

    1. 李明,纪涵,唐敏,朱时洋. 钛合金环肋结构焊接应力变形与承载能力仿真分析. 电焊机. 2024(08): 102-107+117 . 百度学术
    2. 谈啸峰,张鸣宇. 中大型船舶维修过程中的焊接工艺优化及质量控制. 产品可靠性报告. 2023(12): 95-97 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  187
  • HTML全文浏览量:  35
  • PDF下载量:  38
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-05-16
  • 网络出版日期:  2023-03-10

目录

    /

    返回文章
    返回