Free Vibration Characteristics of Ultra-high Molecular Weight Polyethylene Reinforced Corrugated Sandwich Structure
-
摘要: 金属波纹夹芯结构因超轻、结构性能好(比刚度/强度)、主动冷却能力强、易于制造和维修等诸多优点被广泛应用于高铁、船舶、建筑等领域,然而其阻尼特性较差,在外部载荷激励下容易产生结构振动和噪声。为了提高金属波纹夹芯结构的振动阻尼特性,且同时增强夹芯结构的承载能力,本研究提出采用超高分子量聚乙烯增强金属波纹夹芯结构,并通过试验模态法分析自由层和约束层两种不同增强方式对波纹夹芯结构固有频率和结构阻尼特性的影响。结果表明,自由层和约束层超高分子量聚乙烯增强的金属波纹夹芯结构相比于全金属波纹夹芯结构,阻尼特性得到显著提高。Abstract: Corrugated metal sandwich structures are widely used in high-speed railways, ships, and buildings due to their numerous advantages such as ultra-lightweight, good structural properties (specific stiffness/strength), strong active cooling capacity, and convenience in fabrication and maintenance, etc. However, due to their poor damping characteristics, structural vibration and noise are easily generated under external load excitation. In order to improve the vibration damping characteristics of the corrugated metal sandwich structure and enhance the bearing capacity of the sandwich structure at the same time, we propose the ultra-high molecular weight polyethylene (UHMWPE) to strengthen the corrugated metal sandwich structure, and analyze the effects of the free layer and constrained layer strengthening methods, on the natural frequency and structural damping characteristics of the corrugated sandwich structure. The results show that the damping characteristics of the metal corrugated sandwich structure reinforced with the free and constrained layers of UHMWPE are significantly improved compared with that of the all-metal corrugated sandwich structure.
-
-
[1] 孙小曼. 车用波纹夹芯板弯曲性能研究[D].大连:大连理工大学, 2013. [2] KNOX E M, COWLING M J, WINKLE I E. Adhesively bonded steel corrugated core sandwich construction for marine applications[J]. Marine Structures, 1998, 11(4-5):185-204.
[3] LAKES R S. High damping composite materials:eff-ect of structural hierarchy[J]. Journal of Composite Materials, 2002, 36(3):287-297.
[4] KERWIN E M Jr. Damping of flexural waves by a co-nstrained viscoelastic layer[J]. The Journal of the Acoustical Society of America, 2005, 31(7):952.
[5] ROSS D, UNGAR E E, KERVIN E M. Damping of plate flexural vibrations by means of viscoelastic laminae[J]. Structual Damping, 1959:49-97.
[6] UNGAR E E, KERWIN E M Jr. Loss factors of viscoelastic systems in terms of energy concepts[J]. The Journal of the Acoustical Society of America, 1962, 34(7):954-957.
[7] UNGAR E E, KERWIN E M Jr. Plate damping due to thickness deformations in attached viscoelastic layers[J]. The Journal of the Acoustical Society of America, 1964, 36(2):386-392.
[8] YANG J S, XIONG J, MA L, et al. Study on vibra-tion damping of composite sandwich cylindrical shell with pyramidal truss-like cores[J]. Composite Structures, 2014, 117:362-372.
[9] YANG J S, XIONG J, MA L, et al. Vibration and da-mping characteristics of hybrid carbon fiber composite pyramidal truss sandwich panels with viscoelastic layers[J]. Composite Structures, 2013, 106:570-580.
[10] WANG X, LI X, YU R P, et al. Enhanced vibration and damping characteristics of novel corrugated sandwich panels with polyurea-metal laminate face sheets[J]. Composite Structures, 2020, 251:112591.
[11] WANG X, LI X, YUE Z S, et al. Optimal design of metallic corrugated sandwich panels with polyurea-metal laminate face sheets for simultaneous vibration attenuation and structural stiffness[J]. Composite Structures, 2021, 256:112994.
[12] 何业茂, 焦亚男, 周庆, 等. 超高分子量聚乙烯纤维/水性聚氨酯复合材料层压板抗软钢芯弹侵彻性能及其损伤机制[J]. 复合材料学报, 2021, 38(5):1455-1467. [13] 赵刚, 赵莉, 谢雄军. 超高分子量聚乙烯纤维的技术与市场发展[J]. 纤维复合材料, 2011, 28(1):50-56. [14] FINK B K. Performance metrics for composite integral armor[J]. Journal of Thermoplastic Composite Materials, 2000, 13(5):417-431.
[15] 陈雪雪. 超高分子量聚乙烯及其改性材料的消声减振性能研究[D].太原:中北大学, 2018.
计量
- 文章访问数: 105
- HTML全文浏览量: 39
- PDF下载量: 5