Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变行为及位错类型研究

许玲玉, 王洋, 王启, 蒋鹏, 廖志谦

许玲玉, 王洋, 王启, 蒋鹏, 廖志谦. Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变行为及位错类型研究[J]. 材料开发与应用, 2021, 36(1): 17-23.
引用本文: 许玲玉, 王洋, 王启, 蒋鹏, 廖志谦. Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变行为及位错类型研究[J]. 材料开发与应用, 2021, 36(1): 17-23.
XU Lingyu, WANG Yang, WANG Qi, JIANG Peng, LIAO Zhiqian. Study on Compressive Creep Behavior at Room Temperature and Dislocation Type of Ti-6Al-3Nb-2Zr-1Mo Alloy[J]. Development and Application of Materials, 2021, 36(1): 17-23.
Citation: XU Lingyu, WANG Yang, WANG Qi, JIANG Peng, LIAO Zhiqian. Study on Compressive Creep Behavior at Room Temperature and Dislocation Type of Ti-6Al-3Nb-2Zr-1Mo Alloy[J]. Development and Application of Materials, 2021, 36(1): 17-23.

Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变行为及位错类型研究

详细信息
    作者简介:

    许玲玉,女,1990年生,助理工程师,硕士,主要从事舰船钛合金应用研究。E-mail:xulingyumse@126.com

  • 中图分类号: TG146.23

Study on Compressive Creep Behavior at Room Temperature and Dislocation Type of Ti-6Al-3Nb-2Zr-1Mo Alloy

  • 摘要: 研究Ti-6Al-3Nb-2Zr-1Mo合金在不同外加应力下的室温压缩蠕变行为,拟合了蠕变曲线,计算出蠕变发生第二阶段的临界值,并对不同应力水平压缩后的合金显微组织进行TEM观察,研究其位错滑移类型。结果表明:室温条件下,Ti-6Al-3Nb-2Zr-1Mo合金压缩蠕变-时间曲线符合时间强化指数模型,该合金发生蠕变第二阶段的临界值为518 MPa,这为深海装备的安全设计提供了依据。Ti-6Al-3Nb-2Zr-1Mo合金室温压缩蠕变机制主要是位错滑移,其中基面滑移最容易启动,其次是柱面滑移和锥面滑移。结合微观组织分析与蠕变曲线可以判断锥面滑移对蠕变有较大贡献。
    Abstract: Compressive creep behavior and mechanism at room temperature of Ti-6 Al-3 Nb-2 Zr-1 Mo alloy under different applied stresses were investigated, the creep curves were fitted, the critical value of the second stage of creep calculated, the microstructures of the alloy after compression at different stress levels observed by TEM, and the dislocation slip types studied. The results showed that the compressive creep curve of Ti-6 Al-3 Nb-2 Zr-1 Mo titanium alloy conformed to the time-strengthening model at room temperature, and the critical value of the second stage of creep was 518 MPa, which laid a foundation for the safety design of deep-sea equipment. The creep mechanism of Ti-6 Al-3 Nb-2 Zr-1 Mo titanium alloy at room temperature was mainly dislocation slip, and the slip system with the most easy starting was basal slip, followed by prismatic slip and pyramidal slip. By microstructure and creep curve analysis, it was concluded that pyramidal slip had a great contribution to creep deformation.
  • [1] 陈军,赵永庆,常辉.中国船用钛合金的研究和发展[J].材料导报,2005,19(6):67-70.
    [2] 张莉,徐宏,马秋林,等.工业纯钛TA2的低温蠕变行为[J].稀有金属材料与工程,2008,45(2):346-352.
    [3] 洪权,戚运莲,郭萍,等.Ti600合金显微组织形貌特征与蠕变性能[J].稀有金属材料与工程,2008,37(增刊3):435-438.
    [4] 王敏敏,赵永庆,周廉,等.影响钛合金蠕变行为的因素分析[J].稀有金属材料与工程,2002,31(2):135-139.
    [5]

    DORAISWAMY D,ANKEM S.The effect of grain size and stability on ambient temperature tensile and creep deformation in meta-stable beta titanium alloys[J].Acta Materialia,2003,51(6):1607-1619.

    [6]

    OBERSON P G,ANKEM S.The effect of time-dependent twinning on low temperature (<0.25Tm) creep of an alpha-titanium alloy[J].International Journal of Plasticity,2009,25(5):881-900.

    [7]

    ANKEM S,WYATT Z W,JOOST W.Advances in low-temperature creep behavior of single and two-phase titanium alloys[J].Proc.Eng.,2013,55:10-16.

    [8] 陈博文,黄杰,淡振华,等.Ti-6Al-3Nb-2Zr-1Mo合金常温高压压缩蠕变行为研究[J].热加工工艺,2018,47(24):73-75.
    [9] 王雷,屈平,李艳青,等.钛合金蠕变特性的理论与试验研究[J].船舶力学,2018,22(4):464-474.
    [10] 张梦园,顾伯勤,陶家辉.工业纯钛TA2的室温压缩蠕变预测模型[J].机械工程材料,2018,42(12):73-76.
    [11] 王雷,屈平,黄进浩,等.钛合金耐压结构蠕变数值计算方法与试验验证[J].船舶力学,2019,23(2):190-199.
    [12]

    WILLIAMS J C,BAGGERLY R G,PATON N E.Deformation behavior of HCP Ti-Al alloy single[J].Metall and Mat Trans A,2002,33:837-850.

计量
  • 文章访问数:  386
  • HTML全文浏览量:  67
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-25
  • 刊出日期:  2021-02-24

目录

    /

    返回文章
    返回