舰船用电磁吸波材料的研究现状及展望

侯瑞, 张子栋, 刘峣

侯瑞, 张子栋, 刘峣. 舰船用电磁吸波材料的研究现状及展望[J]. 材料开发与应用, 2025, 40(2): 64-77.
引用本文: 侯瑞, 张子栋, 刘峣. 舰船用电磁吸波材料的研究现状及展望[J]. 材料开发与应用, 2025, 40(2): 64-77.
HOU Rui, ZHANG Zidong, LIU Yao. Research Status and Perspectives of Electromagnetic Wave Absorption Materials Used in Ship[J]. Development and Application of Materials, 2025, 40(2): 64-77.
Citation: HOU Rui, ZHANG Zidong, LIU Yao. Research Status and Perspectives of Electromagnetic Wave Absorption Materials Used in Ship[J]. Development and Application of Materials, 2025, 40(2): 64-77.

舰船用电磁吸波材料的研究现状及展望

基金项目: 

国家自然科学基金(52171141)

山东省优秀青年科学基金(ZR2020YQ32)

国家重点研发计划项目(2022YFB3505104,2022YFB3706604)

山东省杰出青年科学基金(ZR2022JQ19)

详细信息
    作者简介:

    侯瑞,男,1989年生,副研究员,主要研究方向为隐身功能材料。

    通讯作者:

    刘峣,男,1983年生,教授,主要从事电磁吸波/屏蔽材料及装备,软磁合金/复合材料及电机等方向研究。E-mail:liuyao@sdu.edu.cn

  • 中图分类号: TB34

Research Status and Perspectives of Electromagnetic Wave Absorption Materials Used in Ship

  • 摘要: 高性能电磁吸波材料在军用和民用领域都有广泛的应用需求,新型电磁吸波材料的研究也是材料领域的热点方向。本研究简要综述了不同电磁吸波材料的电磁吸收机理和关键影响因素,重点介绍了船用电磁吸波材料及其优化设计。此外,从纳米电磁吸波材料、导电聚合物电磁吸波材料、手性电磁吸波材料和高熵电磁吸波材料等介绍了新型电磁吸波材料的研究进展。最后,对电磁吸波材料的未来研究方向进行了展望。
    Abstract: High-performance electromagnetic wave absorbing materials (EMAM) are urgently needed in both military and civilian fields, and the research of next-generation EMAM is also a hot topic from the perspective of materials science. In this work, different electromagnetic absorption mechanisms and key influencing factors of EMAM used in ship are briefly summarized, and marine EMAM and their optimal design are emphasized.mIn addition, the research progress of next-generation EMAM is discussed from perspectives of nano EMAM, conductive polymer EMAM, chiral EMAM, and high-entropy EMAM. Finally, the future research direction in EMAM are presented.
  • [1]

    AKINAY Y, GUNES U, BEKTAŞ Ç, et al. Recent progress of electromagnetic wave absorbers: a systematic review and bibliometric approach[J]. ChemPhysMater, 2023, 2(3): 197-206.

    [2]

    XU H P, TANG T, MAN Z M, et al. Research status and future perspectives of low dimensional electromagnetic wave absorption materials[J]. Journal of Materials Chemistry C, 2023, 11(42): 14481-14494.

    [3]

    LI W, XU M, XU H X, et al. Metamaterial absorbers: from tunable surface to structural transformation[J]. Adv Mater, 2022, 34(38): e2202509.

    [4] 卢瑶. 深度卷积神经网络模型优化方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
    [5] 陈孟州, 刘顾, 汪刘应, 等. 超材料吸波体及其3D打印制造研究进展[J]. 材料导报, 2023, 37(16): 179-185.
    [6]

    ZHOU S Y, ZHANG G H, NIE Z Q, et al. Recent advances in 3D printed structures for electromagnetic wave absorbing and shielding[J]. Materials Chemistry Frontiers, 2022, 6(13): 1736-1751.

    [7] 阮心怡, 张恒宇, 王妮, 等. 周期结构电磁超材料吸波体的设计及最新进展[J]. 材料导报, 2024, 38(3): 35-45.
    [8] 周济, 李龙土. 超材料技术及其应用展望[J]. 中国工程科学, 2018, 20(6): 69-74.
    [9] 张健超, 张捷, 赵瑞花, 等. 生物质衍生碳基吸波材料研究新进展[J]. 应用化工, 2023, 52(3): 934-938.
    [10]

    QIN M, ZHANG L M, WU H J. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9(10): 2105553.

    [11]

    LIANG L, GU W, WU Y, et al. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(4): e2106195.

    [12]

    KITTEL C. On the theory of ferromagnetic resonance absorption[J]. Physical Review, 1948, 73(2): 155-161.

    [13] 刘祥萱, 王煊军, 崔虎. 雷达波吸收材料设计与特性分析[M]. 北京: 国防工业出版社, 2018.
    [14]

    SAWANT K K, SATAPATHY A, MAHIMKAR K, et al. Recent advances in MXene nanocomposites as electromagnetic radiation absorbing materials[J]. Journal of Electronic Materials, 2023, 52(6): 3576-3590.

    [15]

    JIANG W H, JIANG D W, HUANG Y D, et al. Strategies to construct conductive structures of polymer-based electromagnetic wave attenuation composites[J]. Journal of Materials Chemistry A, 2024, 12(8): 4383-4396.

    [16]

    YANG J B, YANG W Y, LI F S, et al. Research and development of high-performance new microwave absorbers based on rare earth transition metal compounds: a review[J]. Journal of Magnetism and Magnetic Materials, 2020, 497: 165961.

    [17]

    SUN H, CHE R, YOU X, et al. Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities[J]. Advanced Materials (Deerfield Beach, Fla), 2014, 26(48): 8120-8125.

    [18]

    AN Q, LI D, LIAO W, et al. A novel ultra-wideband electromagnetic-wave-absorbing metastructure inspired by bionic gyroid structures[J]. Adv Mater, 2023, 35(26): e2300659.

    [19]

    KUANG B Y, SONG W L, NING M Q, et al. Chemical reduction dependent dielectric properties and dielectric loss mechanism of reduced graphene oxide[J]. Carbon, 2018, 127: 209-217.

    [20]

    QUAN B, SHI W H, ONG S J H, et al. Defect engineering in two common types of dielectric materials for electromagnetic absorption applications[J]. Advanced Functional Materials, 2019, 29(28): 1901236.

    [21]

    WU D, DENG S L, WANG Y Q, et al. Hierarchical porous carbon fibers for broadband and tunable high-performance microwave absorption[J]. Materials Research Bulletin, 2024, 172: 112653.

    [22]

    FANG S, HUANG D Q, LV R T, et al. Three-dimensional reduced graphene oxide powder for efficient microwave absorption in the S-band (2-4 GHz)[J]. RSC Advances, 2017, 7(41): 25773-25779.

    [23] 杨芾藜, 侯兴哲, 郑可, 等. 羰基铁粉形貌对吸波性能的影响[J]. 重庆大学学报, 2017, 40(10): 53-59.
    [24] 石浩,高瞻,杨文飞,等. 脲醛树脂包覆对片状羰基铁粉电磁吸波性能的影响[J]. 表面技术, 2024, 53(4): 175-183.
    [25]

    CHEN H Y, TANG Z P, YIN L J, et al. Low-frequency microwave absorption of CIPs@Mn0.8Zn0.2Fe2O4-CNTs composites[J]. Journal of Inorganic Materials, 2024, 39(1): 71-80.

    [26] 谭春林, 李宇东, 陈肯, 等. 镍锌铁氧体吸波材料研究进展[J]. 宇航材料工艺, 2024, 54(1): 29-35.
    [27]

    KAMBHAMPATI P. Nanoparticles, nanocrystals, and quantum dots: what are the implications of size in colloidal nanoscale materials?[J]. The Journal of Physical Chemistry Letters, 2021, 12(20): 4769-4779.

    [28]

    GAO Z G, XU B H, MA M L, et al. Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@C) and electromagnetic microwave absorption[J]. Composites Part B: Engineering, 2019, 179: 107417.

    [29] 陈冠震, 陈平, 徐东卫, 等. 中空碳/Fe3O4磁性量子点复合材料的制备及其吸波性能[J]. 材料研究学报, 2022, 36(1): 29-39.
    [30]

    LIU X, CAO K Y, CHEN Y Z, et al. Shape-dependent magnetic and microwave absorption properties of iron oxide nanocrystals[J]. Materials Chemistry and Physics, 2017, 192: 339-348.

    [31] 张开创, 高欣宝, 张倩, 等. 碳包覆磁改性碳纳米管基复合材料制备及吸波性能研究[J]. 兵器装备工程学报, 2019, 40(4): 46-49.
    [32] 赵鹏飞, 耿浩然, 范浩军, 等. 二硫化钼/碳纳米管/丁苯橡胶吸波材料的结构与性能[J]. 材料导报, 2020, 34(14): 14204-14208.
    [33]

    PENG K, WANG R Q, CHEN H, et al. Prussian blue derived Fe/C anchoring on multiwalled carbon nanotubes forming chain-like efficient electromagnetic wave absorbent[J]. Journal of Electronic Materials, 2020, 49(11): 6631-6642.

    [34] 黄奔. 碳化硅纤维表面改性及其吸波性能研究[D]. 长沙: 中南大学, 2022.
    [35]

    KUANG J L, CAO W B. Stacking faults induced high dielectric permittivity of SiC wires[J]. Applied Physics Letters, 2013, 103(11): 112906.

    [36]

    ZHANG H Y, XU Y J, ZHOU J G, et al. Stacking fault and unoccupied densities of state dependence of electromagnetic wave absorption in SiC nanowires[J]. Journal of Materials Chemistry C, 2015, 3(17): 4416-4423.

    [37]

    WANG H, WU L N, JIAO J F, et al. Covalent interaction enhanced electromagnetic wave absorption in SiC/Co hybrid nanowires[J]. Journal of Materials Chemistry A, 2015, 3(12): 6517-6525.

    [38]

    LIANG C Y, QIN W, WANG Z J. Cobalt doping-induced strong electromagnetic wave absorption in SiC nanowires[J]. Journal of Alloys and Compounds, 2019, 781: 93-100.

    [39]

    YANG P P, ZHAO X C, LIU Y, et al. Facile, large-scale, and expeditious synthesis of hollow co and Co@Fe nanostructures: application for electromagnetic wave absorption[J]. The Journal of Physical Chemistry C, 2017, 121(15): 8557-8568.

    [40]

    HE N, YANG X F, SHI L X, et al. Chemical conversion of Cu2O/PPy core-shell nanowires (CSNWs): a surface/interface adjustment method for high-quality Cu/Fe/C and Cu/Fe3O4/C CSNWs with superior microwave absorption capabilities[J]. Carbon, 2020, 166: 205-217.

    [41]

    LI X, WEN C Y, YANG L T, et al. MXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropy[J]. Carbon, 2021, 175: 509-518.

    [42]

    ZENG X J, ZHAO C, YIN Y C, et al. Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption[J]. Carbon, 2022, 193: 26-34.

    [43]

    LI X L, YIN X W, HAN M K, et al. A controllable heterogeneous structure and electromagnetic wave absorption properties of Ti2CTx MXene[J]. Journal of Materials Chemistry C, 2017, 5(30): 7621-7628.

    [44]

    LI X, WU Z C, YOU W B, et al. Self-assembly MXene-rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber[J]. Nano-Micro Letters, 2022, 14(1): 73.

    [45] 梁欣. 插层和堆垛调控过渡金属二硫族化合物拓扑与超导性质的理论研究[D]. 合肥: 中国科学技术大学, 2023.
    [46]

    VOIRY D, MOHITE A, CHHOWALLA M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2702-2712.

    [47]

    LIN X Q, NI J. Charge and magnetic states of Mn-, Fe-, and Co-doped monolayer MoS2[J]. Journal of Applied Physics, 2014, 116(4): 044311.

    [48]

    NING M Q, LU M M, LI J B, et al. Two-dimensional nanosheets of MoS2: a promising material with high dielectric properties and microwave absorption performance[J]. Nanoscale, 2015, 7(38): 15734-15740.

    [49]

    ZHANG W D, ZHANG X, WU H J, et al. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials[J]. Journal of Alloys and Compounds, 2018, 751: 34-42.

    [50]

    ZHANG X M, MA J L, LIU Z Y, et al. CoNi-MoS2 composites with high microwave absorption performance[J]. Materials Letters, 2022, 324: 132720.

    [51] 崔燚, 魏恒勇, 杨静凯, 等. 氮化物吸波材料研究进展[J]. 材料工程, 2020, 48(6): 82-90.
    [52] 郑广成, 朱翠苗, 徐思奕, 等. 六方氮化硼对5G基站用屏蔽硅橡胶/羰基铁粉复合材料性能的影响[J]. 绝缘材料, 2021, 54(10): 56-60.
    [53] 刘振强, 胡鑫森, 丁春艳. 氮化硼掺杂多孔碳复合材料的制备及其吸波性能研究[J]. 化工新型材料, 2023, 51(S2): 538-543.
    [54] 谢阿明, 吴凡, 蒋莱, 等. 分子基导电聚合物吸波材料: 进展与未来挑战[J]. 科学通报, 2023, 68(25): 3353-3367.
    [55] 郑明明, 魏玉迪, 杨金宝, 等. 聚噻吩基吸波材料研究进展[J]. 化学推进剂与高分子材料, 2021, 19(5): 14-20.
    [56] 刘凡, 赵晓明. 聚噻吩及其衍生物PEDOT在吸波领域的应用现状[J]. 材料导报, 2020, 34(S1): 507-510.
    [57] 万梅香, 李素珍, 李军朝, 等. 新型导电聚合物微波吸收剂的研究[J]. 宇航材料工艺, 1989, 19(S1): 28-32.
    [58]

    SUN M X, XU C, LI J L, et al. Protonic doping brings tuneable dielectric and electromagnetic attenuated properties for polypyrrole nanofibers[J]. Chemical Engineering Journal, 2020, 381: 122615.

    [59] 魏子健, 谢兆新, 胡煦煦, 等. 掺杂磁性填料的聚合物基电磁屏蔽材料研究进展[J]. 高分子通报, 2023, 36(12): 1646-1659.
    [60] 肖沅凇, 吴学亮, 王延敏, 等. 聚苯胺的应用及其机理研究进展[J]. 胶体与聚合物, 2021, 39(4): 181-184.
    [61] 金丹, 王欢, 杜雨果. 磁控原位聚合铁硅铬/聚苯胺复合材料吸波性能研究[J]. 材料导报, 2020, 34(24): 24150-24154.
    [62]

    QIAO M T, TIAN Y R, WANG J N, et al. Magnetic-field-induced vapor-phase polymerization to achieve PEDOT-decorated porous Fe3O4 particles as excellent microwave absorbers[J]. Industrial & Engineering Chemistry Research, 2022, 61(35): 13072-13082.

    [63]

    KUMARI S, DALAL J, KUMAR A, et al. Microwave absorption performance of core-shell rGO/Ni0.5Co0.5Fe2O4@PEDOT composite: an effective approach to reduce electromagnetic wave pollution[J]. Advanced Engineering Materials, 2022, 24(12): 2200635.

    [64]

    HUANG L X, DUAN Y P, MA X R, et al. Broad-band microwave absorption and adaptable multifunctionality of carbonaceous chiral metamaterials under deep subwavelength thickness[J]. ACS Applied Electronic Materials, 2022, 4(1): 177-187.

    [65]

    SHI Y P, DUAN Y P, HUANG L X, et al. Bio-inspired hierarchical chiral metamaterials: near-field coupling and decoupling effects modulating microwave-stealth properties[J]. Advanced Optical Materials, 2022, 10(20): 2200951.

    [66] 宋鑫芳, 张勇. 高熵合金研究进展[J]. 粉末冶金技术, 2022, 40(5): 451-457.
    [67]

    FU H, JIANG Y, ZHANG M Z, et al. High-entropy rare earth materials: synthesis, application and outlook[J]. Chemical Society Reviews, 2024, 53(4): 2211-2247.

    [68]

    ZHAO B, YAN Z, DU Y, et al. High-entropy enhanced microwave attenuation in titanate perovskites[J]. Adv Mater, 2023, 35(11): e2210243.

    [69]

    ZHAO B, DU Y Q, YAN Z K, et al. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties[J]. Advanced Functional Materials, 2023, 33(1): 2209924.

    [70]

    ZHANG W M, ZHAO B, XIANG H M, et al. One-step synthesis and electromagnetic absorption properties of high entropy rare earth hexaborides (HE REB6) and high entropy rare earth hexaborides/borates (HE REB6/HE REBO3) composite powders[J]. Journal of Advanced Ceramics, 2021, 10(1): 62-77.

    [71]

    ZHENG W, LIU B, YANG C H, et al. Optimal design of 3D macro-structures for multi-layer foams achieving ultra-broadband microwave absorption properties and high retention after immersion in brine[J]. Composites Part B: Engineering, 2024, 268: 111094.

    [72]

    YIN L X, DOYHAMBOURE F J, TIAN X Y, et al. Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials[J]. Composites Part B: Engineering, 2018, 132: 178-187.

    [73]

    YANG C, HE E Y, YANG P, et al. 3D-printed stepped structure based on graphene-FeSiAl composites for broadband and wide-angle electromagnetic wave absorption[J]. Composites Part B: Engineering, 2024, 270: 111135.

计量
  • 文章访问数:  45
  • HTML全文浏览量:  3
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-22

目录

    /

    返回文章
    返回