Effect of Laser Shock Processing on Microstructure and Mechanical Properties of 300M Steel
-
摘要: 采用激光冲击强化(LSP)技术在300M钢表层制备梯度纳米结构,并借助三维表面形貌仪、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射仪(XRD)、纳米压痕仪及拉伸试验机对300M钢不同脉冲能量LSP处理后的微观组织演变和力学性能变化进行表征。结果表明,300M钢经LSP处理后表层形成梯度纳米结构,随着脉冲能量的增加,表层晶粒尺寸从15 nm(3J)细化至10 nm(7J)左右,晶粒出现非晶化;同时,次表层组织中形成了大量位错缠结及形变孪晶等亚结构缺陷,且随着脉冲能量的增加位错密度急剧增高,同时形变孪晶数量也随之增多。LSP后300M钢表层纳米压痕硬度得到显著提高,且随着脉冲能量的增加而增加;强度和塑性得到一定程度的改善,断口形貌由典型的韧性断裂转变为韧-脆混合型断裂。Abstract: The gradient nanostructures are prepared on the surface of 300M steel by laser shock processing (LSP). The microstructure and mechanical properties of 300M steels subjected to LSP with different pulse energies are characterized by three-dimensional surface profilometer, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), nano-indentation instrument and tensile tester. The results show that the gradient nanostructures are formed on the surface of 300M steel after LSP treatment, that the grain size of the surface layer is refined from 15 nm (3 J) to about 10 nm (7 J) with the increase of the pulse energy, and that the grains turn to be amorphous. Meanwhile, a large number of crystal substructure defects such as dislocation tangles and mechanical twins are formed in the subsurface structure. With the increase of pulse energy, the dislocation density increases sharply and the number of mechanical twins increases. The nano-indentation hardness of 300M steel is significantly improved after LSP and increases with increasing pulse energy. The corresponding strength and plasticity are improved to some extent and the fracture morphology changes from typical ductile fracture to ductile-brittle mixed fracture.
-
Keywords:
- 300M steel /
- laser shock processing /
- gradient nanostructure /
- microstructure /
- mechanical property
-
-
[1] ZHANG S S,LI M Q, LIU Y G, et al. The growth behavior of austenite grain in the heating process of 300M steel[J]. Materials Science and Engineering:A, 2011, 528(15):4967-4972.
[2] SKUBISZ P, SINCZAK J. Properties of directquen-ched aircraft forged component made of ultrahig-hstrength steel 300M[J]. Aircraft Engineering and Aerospace Technology, 2018, 90(5):713-719.
[3] GUO Q, LIU J H, YU M, et al. Influence of rust layers on the corrosion behavior of ultra-high strength steel 300M subjected to wet-dry cyclic environment with chloride and low humidity[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(2):139-146.
[4] HAMEED A, ZUBAIR O, SHAMS T A,et al. Failure analysis of a broken support strut of an aircraft landing gear[J]. Engineering Failure Analysis, 2020, 117:104847.
[5] ACHARYA S, SUWAS S, CHATTERJEE K. Review of recent developments in surface nanocrystallization of metallic biomaterials[J]. Nanoscale, 2021, 13(4):2286-2301.
[6] 刘蕾, 孙剑伟. 轴承表面改性技术的研究现状与展望[J]. 材料开发与应用, 2019, 34(4):84-90. [7] GUO W,SUN R, SONG B,et al. Laser shock pee-ning of laser additive manufactured Ti6Al4V titanium alloy[J]. Surface and Coatings Technology, 2018, 349:503-510.
[8] CHATTOPADHYAY A, MUVVALA G, SARKAR S, et al. Effect of laser shock peening on microstructural, mechanical and corrosion properties of laser beam welded commercially pure titanium[J]. Optics & Laser Technology, 2021, 133:106527.
[9] LOUS, LIY, ZHOU L,etal. Surface nanocrystalliza-tion of metallic alloys with different stacking fault energy induced by laser shock processing[J]. Materials&Design, 2016, 104:320-326.
[10] LI Y Q, WANG X D, SONG F L, et al. Effect of residual stress and microstructures on 316 stainless steel treated by LSP[J]. Materials Science Forum, 2017, 898:1261-1265.
[11] ZHANG H P,CAI Z Y, WAN Z D, et al. Microstructure and mechanical properties of laser shock peened 38CrSi steel[J]. Materials Science and Engineering:A, 2020, 788:139486.
[12] 汪军, 李民, 汪静雪, 等. 激光冲击强化对304不锈钢疲劳寿命的影响[J]. 中国激光, 2019, 46(1):8. [13] 陈彬, 张兴权. 激光冲击强化对回转支承用钢42CrMo表面性能的影响[J]. 表面技术, 2019, 48(2):72-78. [14] WANG C Y, LUO K Y, BU X Y,et al. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel[J]. Corros-ion Science, 2020, 177:109027.
[15] LU J Z,LUOKY, ZHANGYK, etal. Grain refinement mechanism of multiple laser shock processing impacts on ANSI 304 stainless steel[J]. Acta Materialia, 2010, 58(16):5354-5362.
[16] LUOS, ZHOUL, WANGX, et al. Surface nanocrystallization and amorphization of dual-phase TC11 titani-um alloys under laser induced ultrahigh strain-rate plastic deformation[J]. Materials (Basel, Switzerland), 2018, 11(4):E563.
[17] YE C, SUSLOV S, FEI X,et al. Bimodal nanocrystallization of NiTi shape memory alloy by laser shock peening and post-deformation annealing[J]. Acta Materialia, 2011, 59(19):7219-7227.
[18] LUJ Z, LUOK Y, ZHANGYK, etal. Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts[J]. Acta Materialia, 2010, 58(11):3984-3994.
[19] 高玉魁, 陶雪菲. 高速冲击表面处理对金属材料力学性能和组织结构的影响[J]. 爆炸与冲击, 2021, 41(4):4-29. [20] AN X H, WU S D, WANG Z G, et al. Significance of stacking fault energy in bulk nanostructured materi-als:insights from Cu and its binary alloys as model systems[J]. Progress in Materials Science, 2019, 101:1-45.
[21] LI Y S,ZHANG Y, TAO N R, et al. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation[J]. Acta Materialia, 2009, 57(3):761-772.
[22] LIUD, LIU D X, ZHANG X H,et al. Surface nanocrystallization of 17-4 precipitation-hardening stain-less steel subjected to ultrasonic surface rolling proc-ess[J]. Materials Science and Engineering:A, 2018, 726:69-81.
[23] ZHOULC, LIYH, HEWF, et al.Deforming TC6 titanium alloys at ultrahigh strain rates during multiple laser shock peening[J]. Materials Science and Engineering:A, 2013, 578:181-186.
[24] DHAKAL B, SWAROOP S. Effect of laser shock peening on mechanical and microstructural aspects of 6061-T6 aluminum alloy[J]. Journal of Materials Processing Technology, 2020, 282:116640.
[25] BRANDSTETTER S, DERLETPM, VAN PETEGEMS, etal. Williamson-hall anisotropy in nanocrystalline metals:X-ray diffraction experiments and atomistic simulations[J]. Acta Materialia, 2008, 56(2):165-176.
[26] MARKMANN J, YAMAKOV V, WEISSMüLLERJ. Validating grain size analysis from X-ray line broadening:a virtual experiment[J]. Scripta Materialia, 2008, 59(1):15-18.
[27] RAI A K, BISWALR, Gupta, RK, et al. Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel[J]. Surface and Coatings Technology, 2019, 358:125-135.
[28] 熊毅, 李鹏燕, 陈路飞, 等. 激光冲击处理超细晶粒高碳钢的微观组织和力学性能[J]. 材料研究学报, 2015, 29(6):469-474. [29] 卢柯. 梯度纳米结构材料[J]. 金属学报, 2015, 51(1):1-10. [30] LUJ Z,LUOKY,ZHANGY K, et al. Effects of laser shock processing and strain rate on tensile property of LY2 aluminum alloy[J]. Materials Science and Engineering:A, 2010, 528(2):730-735.
计量
- 文章访问数: 94
- HTML全文浏览量: 15
- PDF下载量: 20