Processability, Microstructure, and Mechanical Property of Al-Si-Mg-Zr-Cu Alloy Fabricated by Selective Laser Melting
-
摘要: 为提升激光选区熔化(SLM)Al-Si-Mg系铝合金的强度,本研究以SLM专用高Mg含量Al-Si-Mg-Zr合金为基础,通过引入Cu元素对合金进行成分改性,系统研究了Al-Si-Mg-Zr-Cu合金的SLM成形性、显微组织和力学性能。结果表明,在250 W低激光功率下,合金具有良好的SLM成形性能,最大相对密度为99.8%。合金的显微组织以等轴晶为主,熔池内部存在少量的柱状晶,合金的晶粒内部包含网状亚结构,α-Al基体内存在纳米级沉淀相。在激光功率250 W,激光扫描速度1 200 mm/s的工艺参数下制备的SLM成形Al-Si-Mg-Zr-Cu合金的显微硬度为(159±4)HV、抗拉强度为(461±25) MPa、屈服强度为(397±32) MPa、伸长率为(2.4±0.7)%,其强度明显高于目前报道的SLM成形Al-Si-Mg系铝合金的。
-
关键词:
- 激光选区熔化 /
- Cu改性Al-Si-Mg-Zr合金 /
- 微观组织 /
- 力学性能
Abstract: In order to improve the strength of the laser selective melted (SLM) Al-Si-Mg aluminum alloy, a Cu-modified Al-Si-Mg-Zr alloy with high Mg content is fabricated. The processability, microstructure, and mechanical property of the SLM-fabricated Al-Si-Mg-Zr-Cu alloy are systematically studied. The results indicate that the sample exhibits good SLM processability at low laser power (250 W), with a maximum relative density of 99.8%. The microstructure of the alloy is mainly composed of equiaxed grains, with a small amount of columnar grains distributed in the melt pool. The grains contain reticular substructures, and there are nanoscale precipitates exising in the α-Al matrix. When the luse power is 250 W, and the scanning speed is 1 200 mm/s, the microhardness, tensile strength, yield strength, and elongation of the samples are (158 ± 4)HV, (461 ± 25) MPa, (397±32) MPa, and (2.4±0.7)%, respectively. The strength of the SLM-fabricated Al-Si-Mg-Zr-Cu alloy is higher than that of the SLM-fabricated Al-Si-Mg alloy. -
-
[1] 林鑫, 黄卫东. 应用于航空领域的金属高性能增材制造技术[J]. 中国材料进展, 2015, 34(9): 684-688. [2] SING S L, HUANG S, GOH G D, et al. Emerging metallic systems for additive manufacturing: In-situ alloying and multi-metal processing in laser powder bed fusion[J]. Progress in Materials Science, 2021, 119: 100795.
[3] KAUFMANN N, IMRAN M, WISCHEROPP T M, et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia, 2016, 83: 918-926.
[4] ZHANG H, ZHU H H, QI T, et al. Selective laser melting of high strength Al-Cu-Mg alloys: pro-cessing, microstructure and mechanical properties[J]. Materials Science and Engineering: A, 2016, 656: 47-54.
[5] MARTIN J H, YAHATA B D, HUNDLEY J M, et al. 3D printing of high-strength aluminiumalloys[J]. Nature, 2017, 549(7672): 365-369.
[6] ROMETSCH P A, ZHU Y M, WU X H, et al. Re-view of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion[J]. Materials & Design, 2022, 219: 110779.
[7] JIA Q B, ROMETSCH P, KVRNSTEINER P, et al. Selective laser melting of a high strength AlMnSc alloy: alloy design and strengthening mechanisms[J]. Acta Materialia, 2019, 171: 108-118.
[8] LI R D, WANG M B, LI Z M, et al. Developing a high-strength Al-Mg-Si-Sc-Zr alloy for selective laser melting: crack-inhibiting and multiple strengthening mechanisms[J]. Acta Materialia, 2020, 193: 83-98.
[9] GENG Y X, TANG H, XU J H, et al. Strengthening mechanisms of high-performance Al-Mn-Mg-Sc-Zr alloy fabricated by selective laser melting[J]. Science China Materials, 2021, 64(12): 3131-3137.
[10] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
[11] SCHUCH M, HAHN T, BLECKMANN M. The mechanical behavior and microstructure of additively manufactured AlSi10Mg for different material states and loading conditions[J]. Materials Science and Engineering: A, 2021, 813: 141134.
[12] ZHANG H, WANG Y, WANG J J, et al. Achieving superior mechanical properties of selective laser melted AlSi10Mg via direct aging treatment[J]. Journal of Materials Science & Technology, 2022, 108: 226-235.
[13] GENG Y X, WANG Y M, XU J H, et al. A high-strength AlSiMg1.4 alloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2021, 867: 159103.
[14] GENG Y X, WANG Q, WANG Y M, et al. Microstructural evolution and strengthening mechanism of high-strength AlSi8.1Mg1.4 alloy produced by sele-ctive laser melting[J]. Materials & Design, 2022, 218: 110674.
[15] 耿遥祥, 樊世敏, 简江林, 等. 选区激光熔化专用AlSiMg合金成分设计及力学性能[J]. 金属学报, 2020, 56(6): 821-830. [16] 吕洪伟, 张志杰, 罗金杰, 等. 选区激光熔化Al-Si-Mg-Zr合金的组织和力学性能[J]. 稀有金属材料与工程, 2023, 52(3): 1087-1093. [17] 宰春凤, 耿遥祥, 罗金杰, 等. 选区激光熔化成形Al-Si-Mg-Zr合金的微观组织与力学性能[J]. 铸造技术, 2022, 43(11): 975-983. [18] 杨永福, 闫亮明. 铸造铝硅合金及其热处理工艺的研究与进展[J]. 铸造工程, 2022, 46(3): 43-48. [19] 严新炎,FRANCIS C. 高性能AlSiMgCu系铸造铝合金A354的研究[C]// 2018中国铸造活动周论文集. 苏州: 中国机械工程学会铸造分会, 2018: 791-798. [20] WANG G Q, SUN Q Z, FENG L M, et al. Influence of Cu content on ageing behavior of AlSiMgCu cast alloys[J]. Materials & Design, 2007, 28(3): 1001-1005.
[21] MARTIN A, SANSEBA STIAN M, GIL E, et al. Effect of the heat treatment on the microstructure and hardness evolution of a AlSi10MgCu alloy designed for laser powder bed fusion[J]. Materials Science and Engineering: A, 2021, 819: 141487.
[22] WANG P, YU S J, SHERGILL J, et al. Selective laser melting of Al-7Si-0.5 Mg-0.5Cu: effect of heat treatment on microstructure evolution, mechanical properties and wear resistance[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(3): 389-396.
[23] MASKERY I, ABOULKHAIR N T, CORFIELD M R, et al. Quantification and characterisation of porosity in selectively laser melted Al-Si10-Mg using X-ray computed tomography[J]. Materials Characterization, 2016, 111: 193-204.
[24] GONG H J, RAFI K, GU H F, et al. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J]. Additive Manufacturing, 2014, 1-4: 87-98.
[25] ABOULKHAIRN T, EVERITT N M, ASHCROFT I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting[J]. Additive Manufacturing, 2014, 1-4: 77-86.
[26] YANG K, ROMETSCH P, DAVIES C H J, et al. Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy pro-duced by selective laser melting[J]. Materials & Design, 2018, 154: 275-290.
[27] YANG K, ROMETSCH P, JARVIS T, et al. Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting[J]. Materials Science and Engineering: A, 2018, 712: 166-174.
[28] ZHAO L, SANTOS MACÍAS J G, DING L P, et al. Damage mechanisms in selective laser melted AlSi10Mg under as built and different post-treatment conditions[J]. Materials Science and Engineering: A, 2019, 764: 138210.
计量
- 文章访问数: 150
- HTML全文浏览量: 37
- PDF下载量: 30