高自由度S形曲线函数研究

Investigation of the Function with High Degree of Freedom for the S-shape Curve

  • 摘要: S形曲线函数对空间几何及概率统计等的发展具有促进意义,本研究在分析Logistic函数基本特性的基础上调制出了高自由度的S形曲线函数y=A_2+\fracA_1-A_21+\left(\fracx-x_0\Delta x_1\right)^p_1+\left(\fracx-x_0\Delta x_2\right)^p_2。其特征参数为极值A1和A2、极值A1所在位置x0,形状调制参数为Δx1p1、Δx2p2,函数曲线形状为S形的参数条件为A1A2、Δx1>0、Δx2>0、p1>1和p2>1。并推导了调制Logistic函数的一阶导数函数(即切线斜率函数)、法线斜率函数和二阶导数函数。

     

    Abstract: The S-shape curve function with high degree of freedom is proposed based on the analysis of the basic characteristics of the Logistic function, and the S-shape curve function is y=A_2+\fracA_1-A_21+\left(\fracx-x_0\Delta x_1\right)^p_1+\left(\fracx-x_0\Delta x_2\right)^p_2. The characteristic parameters of the function are extreme values of A1 and A2, and the location of extreme value A1 is x0. The shape modulatory parameters of function are Δx1, p1, Δx2 and p2. The conditions assuring the S shape of the function’s curve are A1A2, Δx1>0, Δx2>0, p1>1 and p2>1. The functions of the first derivative (the slope of the tangent), the slope of the normal and the second derivative of the modulatory Logistic function are derived.

     

/

返回文章
返回