Similarity Study on Impact Response of Stiffened Plate
-
摘要: 实尺寸船舶碰撞试验难以开展,一般通过缩尺试验获取结构的碰撞载荷响应,再由相似定律将其转化为实尺寸碰撞响应结果。但是,由于相似定律受诸多因素影响,因此需要深入开展相关研究。本研究开展了两种缩尺模型和实尺寸加筋板结构的低速撞击试验,获取了不同比例试验的撞击载荷响应,考虑板材参数(板厚、材料强度和应变率)和撞击参数(撞击体质量、撞击速度)对缩尺定律的影响,进行了撞击载荷响应的相似性分析。分析结果表明:低速撞击下,应变率和撞击参数对相似定律影响不大;材料板厚和材料强度影响缩尺定律,基于已有撞击力解析公式,对缩尺定律进行修正,可将缩尺模型试验结果转化为实尺寸试验结果。研究成果对实尺寸船体结构的耐撞性评估有一定指导作用。Abstract: Since the full-scale ship collision experiments are hard to perform, reduced scale model tests are conducted to investigate the resistance characteristic. The impact response of the prototype can be transformed from the experimental results of the reduced scale model tests through the similarity law. However, the similarity law is influenced by many factors. Two reduced scale and a prototype stiffened plates are designed to perform the low-velocity impact tests, and the impact resistance responses are obtained. Thereafter, similarity of the impact resistance is analyzed considering the influences of plate parameters (plate thickness, strength and strain rate) and impact parameters (the striking mass and the striking velocity). The results demonstrate that the strain rate and impact parameters influence the similarity law slightly. The plate thickness and strength can influence the similarity law. According to the proposed analytical equations of impact resistances in the large deformation and tearing processed, the reduced scale model test results can be transformed to that of the prototype by correcting the similarity law. The results can provide some guidance for the crashworthiness assessment of full-scale ship structures.
-
Keywords:
- ship collision /
- similarity /
- scale test /
- stiffened plate
-
-
[1] 胡志强,崔维成.船舶碰撞机理与耐撞性结构设计研究综述[J].船舶力学, 2005, 9(2):131-142. [2] GRUBEN G, SØLVERNES S, BERSTAD T, et al.Low-velocity impact behaviour and failure of stiffened steel plates[J].Marine Structures, 2017, 54:73-91.
[3] ZHANG M, SUN Q B, LIU J X, et al.A study of the rupture behavior of a ship side plate laterally punched by a full-shape bulbous bow indenter[J].Ocean Engineering, 2019, 182:48-60.
[4] JONES N.Structural Impact[M].Cambridge:Cambridge University Press, 1989.
[5] BARENBLATT G I.Scaling[M].Cambridge:Cambridge University Press, 2003.
[6] ALVES M, JONES N.Impact failure of beams using damage mechanics:part II-Application[J].International Journal of Impact Engineering, 2002, 27(8):863-890.
[7] CALLE M A G, OSHIRO R E, ALVES M.Ship collision and grounding:Scaled experiments and numerical analysis[J].International Journal of Impact Engineering, 2017, 103:195-210.
[8] LEE Y W, WOERTZ J C, WIERZBICKI T.Fracture prediction of thin plates under hemi-spherical punch with calibration and experimental verification[J].International Journal of Mechanical Sciences, 2004, 46(5):751-781.
[9] 孙斌,胡志强,王晋.楔形船艏撞击舷侧外板的结构响应分析[J].振动与冲击, 2016, 35(23):46-50. [10] ZHANG S M.Plate tearing and bottom damage in ship grounding[J].Marine Structures, 2002, 15(2):101-117.
[11] LIU B, SOARES C G.Simplified analytical method for evaluating web girder crushing during ship collision and grounding[J].Marine Structures, 2015, 42:71-94.
计量
- 文章访问数: 164
- HTML全文浏览量: 15
- PDF下载量: 17