Study on Nanosecond Laser Fabrication of Superhydrophobic Surface on Aluminum Alloy and Thermal Bounce Behavior of Droplets
-
摘要: 金属材料超疏水表面制备近年来引起了高度关注。在本研究中,采用纳秒激光技术制备具有螺旋状微米脊状结构的6061铝合金超疏水表面,对液滴在该表面上的接触角和滚动角进行测量,并结合格子玻尔兹曼数值模拟方法对液滴在该表面上的热弹跳行为进行研究。结果表明,样品的刻蚀深度随激光扫描速度的增大而减小;液滴在未经氟化处理的螺旋状微米脊状结构表面上的接触角约为7°,该表面呈超亲水性,在氟化处理后的螺旋状微米脊状结构表面上的接触角约为150°,该表面呈超疏水性;液滴在扫描速度较低与较高时制备的螺旋状微米脊状结构表面的滚动角分别约为(7±2)°与(33±1)°,不同激光扫描速度使铝合金表面具有了不同的黏附性;液滴在刻蚀深度较大的样品表面更容易发生热弹跳,这是因为此时液滴与热表面接触后的汽化作用在液滴下方产生了更大的向上压力,推动液滴出现连续弹跳。Abstract: In recent years, fabrication of superhydrophobic surfaces on metallic materials has attracted increasing attention. In this study, 6061 aluminum alloy superhydropholic surface with spiral micron ridge structure is fabricated by using the nanosecond laser processing method. The contact and roll angles between the droplets and surfaces are measured, and combined with the lattice Boltzmann simulation method, the thermal bounce behavior of droplets on the spiral micron ridge structure is investigated. The results show that the etching depth of the sample decreases with the increase of scanning speed. The contact angle between the droplet and surface with the spiral micron ridge structure and no fluoridation is about 7°, indicating that the surface has super hydrophilicity; the contact angle between the droplet with spiral micron ridge structure and fluoridation is about 150°, indicating the surface has superhy drophobicity. The roll angles between the droplets and spiral micron ridge structures prepared at low and high scanning speeds are about (7±2)° and (33±1)° respectively. Different scanning speeds make the aluminum alloys have different adhesiveness. The droplets are more likely to undergo thermal bouncing on the surface having a larger etching depth because the vaporization of the droplet after contacting with the hot surface generates a greater upward pressure underneath the droplet, pushing the droplet to bounce continuously.
-
-
[1] BARNWAL V K, RAGHAVAN R, TEWARI A, et al. Effect of microstructure and texture on forming beha-viour of AA-6061 aluminium alloy sheet[J]. Materials Science and Engineering: A, 2017, 679: 56-65.
[2] GUPTA R, VERMA R, KANGO S, et al. A critical review on recent progress, open challenges, and applications of corrosion-resistant superhydrophobic coating[J]. Materials Today Communications, 2023, 34: 105201.
[3] MILLES S, SOLDERA M, KUNTZE T, et al. Characterization of self-cleaning properties on superhydro-phobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J]. Applied Surface Science, 2020, 525: 146518.
[4] LI X W, ZHANG Q X, GUO Z, et al. Fabrication of superhydrophobic surface with improved corrosion inhibition on 6061 aluminum alloy substrate[J]. Applied Surface Science, 2015, 342: 76-83.
[5] 江雷. 从自然到仿生的超疏水纳米界面材料[J]. 新材料产业, 2003(3): 60-65. [6] ZHI J H, ZHANG L Z. Durable superhydrophobic surfaces made by intensely connecting a bipolar top layer to the substrate with a middle connecting layer[J]. Scientific Reports, 2017, 7: 9946.
[7] ZHU J Y, ZHANG L P, DAI X J, et al. One-step fabrication of a superhydrophobic copper surface by nano-silver deposition[J]. 2020, 10(7): 075111.
[8] HAN J P, CAI M Y, LIN Y, et al. 3D re-entrant na-nograss on microcones for durable superamphi-phobic surfaces via laser-chemical hybrid method[J]. Applied Surface Science, 2018, 456: 726-736.
[9] LEE S W, SHIN H S, CHU C N. Fabrication of mic-ropin array with high aspect ratio on stainless steel using nanosecond laser beam machining[J]. Applied Surface Science, 2013, 264: 653-663.
[10] XIA Z, XIAO Y, YANG Z, et al. Droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by hybrid laser ablation and silanization process[J]. Materials (Basel), 2019, 12(5): E765.
[11] NGO C V, DAVAASUREN G, OH H S, et al. Transparency and superhydrophobicity of cone-shaped micropillar array textured polydimethylsiloxane[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(7): 1347-1353.
[12] LI J, LI M Z, HUANG X J, et al. Crosspoint localization of spiral and girth welds of spiral steel pipelines[J]. IEEE Access, 2020, 8: 160387-160395.
[13] RUYLE J E, BERNHARD J T. Wideband transmis-sion line model for Archimedean spiral slot structures[J]. IET Microwaves, Antennas & Propagation, 2014, 8(14): 1211-1217.
[14] GOTTFRIED B S, LEE C J, BELL K J. The leiden-frost phenomenon: film boiling of liquid droplets on a flat plate[J]. International Journal of Heat and Mass Transfer, 1966, 9(11): 1167-1188.
[15] SHIRI S, BIRD J C. Heat exchange between a bouncing drop and a superhydrophobic substrate[J]. Proc Natl Acad Sci USA, 2017, 114(27): 6930-6935.
[16] RICHARD D, QUÉRÉ D. Bouncing water drops[J]. Europhysics Letters (EPL), 2000, 50(6): 769-775.
[17] GRADECK M, SEILER N, RUYER P, et al. Heat transfer for Leidenfrost drops bouncing onto a hot surface[J]. Experimental Thermal and Fluid Science, 2013, 47: 14-25.
[18] XU Y J, TIAN L L, ZHU C L, et al. Impact and boiling characteristics of a droplet on heated surfaces: a 3D lattice Boltzmann study[J]. Applied Thermal Engineering, 2023, 219: 119360.
[19] ZHANG Q Y, DONG Q P, WANG S L, et al. Continuous droplet rebound on heated surfaces and its effects on heat transfer property: a lattice Boltzmann study[J]. Chinese Physics B, 2021, 30(4): 044703.
[20] LI Q, KANG Q J, FRANCOIS M M, et al. Lattice Boltzmann modeling of self-propelled Leidenfrost droplets on ratchet surfaces[J]. Soft Matter, 2016, 12(1): 302-312.
[21] LI Q, KANG Q J, FRANCOIS M M, et al. Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability[J]. International Journal of Heat and Mass Transfer, 2015, 85: 787-796.
[22] LI Q, ZHOU P, YAN H J. Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: a lattice Boltzmann study[J]. Langmuir, 2016, 32(37): 9389-9396.
[23] ZHANG Q Y, SUN D K, PAN S Y, et al. Microporosity formation and dendrite growth during solidification of aluminum alloys: Modeling and experiment[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118838.
[24] YUAN P, SCHAEFER L. Equations of state in a latti-ce Boltzmann model[J]. Physics of Fluids, 2006, 18(4): 042101.
[25] LONG J Y, CAO Z, LIN C H, et al. Formation mechanism of hierarchical micro- and nanostructures on copper induced by low-cost nanosecond lasers[J]. Applied Surface Science, 2019, 464: 412-421.
[26] BICO J, TORDEUX C, QUÉRÉ D. Rough wetting[J]. Europhysics Letters (EPL), 2001, 55(2): 214-220.
[27] VAN HONSCHOTEN J W, BRUNETS N, TAS N R. Capillarity at the nanoscale[J]. Chemical Society Reviews, 2010, 39(3): 1096-1114.
[28] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994.
[29] QING Y Q, SHI S L, LV C J, et al. Microskeleton-nanofiller composite with mechanical super-robust superhydrophobicity against abrasion and impact[J]. Advanced Functional Materials, 2020, 30(39): 1910665.
[30] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.
[31] YIN B F, XIE X, XU S, et al. Effect of pillared surfaces with different shape parameters on droplet wettability via Lattice Boltzmann method[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126259.
[32] ZHANG W L, WANG D H, SUN Z N, et al. Robust superhydrophobicity: mechanisms and strategies[J]. Chemical Society Reviews, 2021, 50(6): 4031-4061.
[33] ONDA T, SHIBUICHI S, SATOH N, et al. Super-water-repellent fractal surfaces[J]. Langmuir, 1996, 12(9): 2125-2127.
-
期刊类型引用(1)
1. 张存鹰,王俊阳,袁帅,刘瑜. 超声激光复合制备7075铝合金微织构表面润湿特性研究. 机电工程技术. 2025(01): 33-38+58 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 61
- HTML全文浏览量: 5
- PDF下载量: 18
- 被引次数: 1