Ni-Ti-Si三元合金热力学性质及非晶形成范围计算

董洪娜, 李桂杰

董洪娜, 李桂杰. Ni-Ti-Si三元合金热力学性质及非晶形成范围计算[J]. 材料开发与应用, 2024, 39(3): 10-19.
引用本文: 董洪娜, 李桂杰. Ni-Ti-Si三元合金热力学性质及非晶形成范围计算[J]. 材料开发与应用, 2024, 39(3): 10-19.
DONG Hongna, LI Guijie. Thermodynamic Properties of Ni-Ti-Si Ternary Alloy and Calculation of Amorphous Formation Range[J]. Development and Application of Materials, 2024, 39(3): 10-19.
Citation: DONG Hongna, LI Guijie. Thermodynamic Properties of Ni-Ti-Si Ternary Alloy and Calculation of Amorphous Formation Range[J]. Development and Application of Materials, 2024, 39(3): 10-19.

Ni-Ti-Si三元合金热力学性质及非晶形成范围计算

详细信息
    作者简介:

    董洪娜,硕士研究生,研究方向为材料热力学性质计算与模拟。E-mail:dhn1535209665@163.com

    通讯作者:

    李桂杰,副教授,博士,研究方向为无铅焊料、金属基复合材料、材料的模拟与计算等。E-mail:liguijieli@163.com

  • 中图分类号: TG142.74

Thermodynamic Properties of Ni-Ti-Si Ternary Alloy and Calculation of Amorphous Formation Range

  • 摘要: 基于Chou模型计算了在1 273 K下Ni-Ti-Si三元合金的形成焓ΔH、过剩熵SE、过剩吉布斯自由能GE、各组元的活度以及8个Ni-Ti-Si三元合金金属间化合物的形成焓。基于Toop模型预测了在1 273 K下Ni-Ti-Si三元合金的非晶形成范围。结果表明:Ni-Ti-Si三元合金在xNi=0.39、xTi=0.25、xSi=0.36时的ΔHSEGE取得最小值,分别为ΔHmin=-56.25 kJ/mol、SEmin=-6.38 J/mol、GEmin=-48.14 kJ/mol。8个金属间化合物中,金属间化合物τ1的ΔH最负,这说明τ1的相稳定性最高,在凝固时最先析出,然后是τ2τ6τ8析出,最后是τ3τ4τ5析出;Ni-Ti-Si三元系各组元活度值与理想熔体之间存在非常大的负偏差;Ni-Ti-Si三元合金可以形成非晶,并且非晶形成范围很大,主要位于xTi=20%~80%和xNi=15%~90%的成分范围内。本研究计算出的Ni-Ti-Si三元合金的金属间化合物成分范围以及非晶形成范围均与实验结果吻合良好。
    Abstract: The formation enthalpy ΔH, excess entropy SE, excess Gibbs free energy GE, and activity of each constituent element of Ni-Ti-Si ternary alloy at 1 273 K is calculated based on Chou model, and the formation enthalpies of 8 intermetallic compounds of the Ni-Ti-Si ternary alloy are calculated. The amorphous formation range of Ni-Ti-Si ternary alloy at 1 273 K is predicted based on Toop model. The calculated results show that when xNi=0.39, xTi=0.25, and xSi= 0.36, the Ni-Ti-Si ternary alloy has the minimum ΔH, SE and GE, and ΔHmin=-56.25 kJ/mol, SEmin=-6.38 J/mol, and GEmin=-48.14 kJ/mol. Of the 8 intermetallic compounds, the ΔH of the intermetallic compound τ1 is the most negative, indicating that its phase stability is the highest. It is the first to precipitate, τ2, τ6, τ7 and τ8 are the next, and τ3, τ4 and τ5 are the last. Ni-Ti-Si ternary system has a very large negative deviation between the activity values of each constituent element and the ideal melt. Amorphous can be formed in the Ni-Ti-Si ternary alloy, and the amorphous formation range is very large, mainly in the composition range of xTi=20%~80% and xNi=15%~90%. The calculated range of intermetallic compounds and amorphous formation range of Ni-Ti-Si ternary alloy are in good agreement with the experimental results.
  • [1] 李珑,郭亚飞,张思思,等.高原富锂水盐体系相平衡及热力学性质研究进展[J].科技导报, 2017, 35(12):55-61.
    [2]

    FRASER D G. Activities of trace elements in silicate melts[J]. Geochimica et Cosmochimica Acta, 1975, 39(11):1525-1530.

    [3]

    KOHLER F. Zur berechnung der thermodynamischen daten eines tern ären systems aus den zugehörigen binären systemen[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1960, 91(4):738-740.

    [4] 周国治.新一代的溶液几何模型及其今后的展望[J].金属学报, 1997, 33(2):126-132.
    [5]

    YUAN Y, HUANG Y, WEI Q. Effects of Zr addition on thermodynamic and kinetic properties of liquid Mg-6Zn-xZr alloys[J]. Metals, 2019, 9(5):607.

    [6]

    OUYANG Y F, ZHONG X P, DU Y, et al. Forma-tion enthalpies of Fe-Al-RE ternary alloys calculated with a geometric model and Miedema's theory[J]. Journal of Alloys and Compounds, 2006, 416(1-2):148-154.

    [7]

    TAKASUGI T, NAGASHIMA M, IZUMI O. Streng-thening and ductilization of Ni3Si by the addition of Ti elements[J]. Acta Metallurgica et Materialia, 1990, 38(5):747-755.

    [8]

    TOKUNAGA T, HASHIMA K, OHTANI H, et al. Thermodynamic analysis of the Ni-Si-Ti system using thermochemical properties determined from ab initio calculations[J]. MATERIALS TRANSACTIONS, 2004, 45(5):1507-1514.

    [9]

    DU Y, HE C, SCHUSTER J, et al. Thermodynamic description of the Ni-Si-Ti ternary system[J]. International Journal of Materials Research, 2006, 97:543-555.

    [10]

    HU B, YUAN X M, DU Y, et al. Thermodynamic reassessment of the Ni-Si-Ti system using a four-sublattice model for ordered/disordered fcc phases supported by first-principles calculations[J]. Journal of Alloys and Compounds, 2017, 693:344-356.

    [11] 黄浩,张勇.高熵合金与非晶合金柔性材料[J].工程科学学报, 2021, 43(1):119-128.
    [12]

    SUN S P, YI D Q, LIU H Q, et al. Calculation of glass forming ranges in Al-Ni-RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miede-ma's model[J]. Journal of Alloys and Compounds, 2010, 506(1):377-387.

    [13]

    WANG Y Y, LI J H, WANG T L, et al. Amorphous phase formation in the Ni-Ti-Ta system studied by thermodynamic calculation and ion beam mixing[J]. Intermetallics, 2014, 53:102-106.

    [14]

    CUI K Y, DENG Y L, ZHANG C, et al. Prediction of glass forming ranges in Ti-Ni-Zr, Ti-Cu-Zr and Ti-Cu-Hf systems based on miedema and atomic parameter models[J]. Materials Transactions, 2020, 61(7):1200-1204.

    [15]

    YUAN R, YU Z G, LENG H Y, et al. Thermodynamic evaluation and experimental verification of the glass forming ability of Cu-Zr-based alloys[J]. Journal of Non-Crystalline Solids, 2021, 564:120835.

    [16]

    LU B C, WANG Y L, XU J. Revisiting the glass-forming ability of Ti-Ni-Si ternary alloys[J]. Journal of Alloys and Compounds, 2009, 475(1-2):157-164.

    [17]

    ZHANG Y Q, JIANG S Y, LIANG Y L, et al. Simulation of dynamic recrystallization of NiTi shape memory alloy during hot compression deformation based on cellular automaton[J]. Computational Materials Science, 2013, 71:124-134.

    [18]

    INOUE A. Bulk Amorphous Alloys:preparation and Fundamental Characteristics[J]. TTP, 1998.

    [19]

    WASTIN F, SUMIYAMA K, HIHARA T, et al. Influence of the synthesis mode on electronic properties of Ce-Ni amorphous alloys[J]. Physica B:Conden-sed Matter, 1993, 186-188:563-565.

计量
  • 文章访问数:  154
  • HTML全文浏览量:  15
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-03
  • 网络出版日期:  2024-07-22

目录

    /

    返回文章
    返回