Influence of Ta Doping on Microstructure and Mechanical Properties of γ-TiAl Based Alloy
-
摘要: 研究了Ti-48Al-2Nb-2Cr-xTa(x=0,1.0,2.0)(原子分数,%)合金α单相区淬火,块状组织(γm相)的演变规律,采用EBSD(电子背散射衍射)技术对晶粒取向进行表征。结果表明,在快速冷却条件下,微量Ta元素的添加能够促进γm相的析出,促进(体积分数大于50%)或者抑制(体积分数小于50%)γm相析出的Ta元素临界含量为2 %(原子分数)。Ta元素能够细化γm相亚颗粒,同时,不同种类γm变体可直接在α2晶粒内以BOR形核,在生长过程中发生了沿着{111}γ密排面的变体选择,使得第二代γm变体偏离BOR。Abstract: The evolution behavior of massive γ (γm) quenching from single α-phase region in Ti-48Al-2Nb-2Cr-xTa (x=0, 1.0, 2.0) alloy is systematically studied. The electron back scattering diffraction method is used to character the grain orientation. The precipitation of γm phase can be greatly promoted by Ta element. The critical content of Ta, promoting or inhibiting the precipitation of γm, is 2% (atom fraction). Ta element can refine the γm subgrains, and the various γm variants can directly nucleate inside the α2 grains in the form of BOR. In the course of growth, the γm nuclei selects its variant over the close-packed {111}γ plane, making the γm nuclei deviating from BOR.
-
Keywords:
- intermetallic compound /
- γm phase /
- Ta /
- nucleate /
- growth
-
-
[1] ZHANG X S, CHEN Y J, HU J L. Recent advances in the development of aerospace materials[J]. Progress in Aerospace Sciences, 2018, 97:22-34.
[2] LIU J H, ZHANG F Q, NAN H, et al. Effect of C addition on as-cast microstructures of high Nb containing TiAl alloys[J]. Metals, 2019, 9(11):1201.
[3] HAUßMANN L, NEUMEIER S, BRESLER J, et al. Influence of Nb, Ta and Zr on the interdiffusion coefficients and solid solution strengthening of γ-TiAl single phase alloys[J]. Metals, 2022, 12(5):752.
[4] LAPIN J, MAREK K. Effect of continuous cooling on solid phase transformations in TiAl-based alloy during Jominy end-quench test[J]. Journal of Alloys and Compounds, 2018, 735:338-348.
[5] ZHANG K R, HU R, YANG J R, et al. The phase transformation behavior between γ lamellae and massive γ in a Ta containing TiAl-based alloy[J]. Journal of Alloys and Compounds, 2020, 821:153290.
[6] CHEN H M, LI X W, CHEN Z P, et al. Investigation on electronic structures and mechanical properties of Nb-doped TiAl2 intermetallic compound[J]. Journal of Alloys and Compounds, 2019, 780:41-48.
[7] FANG H Z, CHEN R R, CHEN X Y, et al. Effect of Ta element on microstructure formation and mechanical properties of high-Nb TiAl alloys[J]. Intermetallics, 2019, 104:43-51.
[8] HUANG A, HU D, WU X H, et al. The influence of interrupted cooling on the massive transformation in Ti46Al8Nb[J]. Intermetallics, 2007, 15(9):1147-1155.
[9] DEY S R, BOUZY E, HAZOTTE A. Intragranular nucleation sites of massive γ grains in a TiAl-based alloy[J]. Scripta Materialia, 2007, 57(4):365-368.
[10] LIU G H, LI T R, FU T L, et al. Morphology and competitive growth during the development of the parallel lamellar structure by self-seeding in directionally solidified Ti-50Al-4Nb alloy[J]. Journal of Alloys and Compounds, 2016, 682:601-609.
[11] MASSALSKI T B, LAUGHLIN D E, SOFFA W A. The nature and role of incoherent interphase interfaces in diffusional solid-solid phase transformations[J]. Metallurgical and Materials Transactions A, 2006, 37(3):825-831.
[12] AARONSON H I. Mechanisms of the massive transformation[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2285-2297.
[13] SANKARAN A, BOUZY E, HUMBERT M, et al. Variant selection during nucleation and growth of γ-massive phase in TiAl-based intermetallic alloys[J]. Acta Materialia, 2009, 57(4):1230-1242.
[14] 杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51(2):129-147. [15] GAO Z T, HU R, HUANG Z J, et al. Metastable transformation behavior in a Ta-containing TiAl-Nb alloy during continuous cooling[J]. Journal of Alloys and Compounds, 2022, 904:164088.
[16] DEY S R, HAZOTTE A, BOUZY E. Crystallography and phase transformation mechanisms in TiAl-based alloys-A synthesis[J]. Intermetallics, 2009, 17(12):1052-1064.
[17] ZHANG K R, HU R, LI J G, et al. Grain refinement of 1 at.% Ta-containing cast TiAl-based alloy by cyclic air-cooling heat treatment[J]. Materials Letters, 2020, 274:127940.
[18] SAEEDIPOUR S, KERMANPUR A, SADEGHI F. Effect of N addition on microstructure refinement and high temperature mechanical properties of Ti-46Al-8Ta (at.%) intermetallic alloy[J]. Journal of Alloys and Compounds, 2020, 817:152749.
[19] LAPIN J, PELACHOVÁ T, DOMÁNKOVÁ M. Lon-gterm creep behaviour of cast TiAl-Ta alloy[J]. Intermetallics, 2018, 95:24-32.
[20] SAAGE H, HUANG A J, HU D, et al. Microstruc-tures and tensile properties of massively transformed and aged Ti46Al8Nb and Ti46Al8Ta alloys[J]. Intermetallics, 2009, 17(1-2):32-38.
[21] JIANG H, ZHANG K, HAO X J, et al. Nucleation of massive gamma during air cooling of Ti46Al8Ta[J]. Intermetallics, 2010, 18(5):938-944.
[22] ZHANG K R, HU R, WANG X Y, et al. Precipita-tion of two kinds of γ laths in massive γ coexisting with γ lamellae in as-cast Ta-containing TiAl-Nb alloys[J]. Materials Letters, 2016, 185:480-483.
[23] HU D, HUANG A J, WU X. On the massive phase transformation regime in TiAl alloys:the alloying effect on massive/lamellar competition[J]. Intermetallics, 2007, 15(3):327-332.
[24] WANG J G, ZHANG L C, CHEN G L, et al. TEM observations of mechanical twins in a hot-deformed Ti-45Al-10Nb alloy[J]. Materials Science and Engineering:A, 1998, 252(2):222-231.
[25] FU C L, YOO M H. Interfacial energies in two-phase TiAl-Ti3Al alloy[J]. Scripta Materialia, 1997, 37(10):1453-1459.
[26] ZHANG K R, HU R, LEI T C, et al. Refinement of massive γ phase with enhanced properties in a Ta containing γ-TiAl-based alloys[J]. Scripta Materialia, 2019, 172:113-118.
[27] WANG X D, SHEN Y D, SONG S X, et al. Atomic-scale understanding of the γ/α2 interface in a TiAl alloy[J]. Journal of Alloys and Compounds, 2020, 846:156381.
[28] WITTIG J E. The massive transformation in titanium aluminides:initial stages of nucleation and growth[J]. Metallurgical and Materials Transactions A, 2002, 33(8):2373-2379.
[29] LIU G H, WANG Z D, FU T L, et al. Study on the microstructure, phase transition and hardness for the TiAl-Nb alloy design during directional solidification[J]. Journal of Alloys and Compounds, 2015, 650:45-52.
-
期刊类型引用(4)
1. 李传胜,王雷,郭糠,杨祥帆,于文晶,王利忠,王洪宝,张怀强,张英波. Mo对钛合金激光焊接接头组织性能影响研究. 电焊机. 2025(01): 73-79 . 百度学术
2. 董兵天,安子良,陈昊睿,武鹏博,罗玖田,牛董山钰,曹浩. 厚壁钛合金激光填丝焊研究现状及发展趋势. 电焊机. 2025(02): 46-57+69 . 百度学术
3. 张明盛,江舒,刘汉鼎,刘雨. 钛合金T型结构激光电弧复合对称焊接系统设计与分析. 现代信息科技. 2024(10): 177-182 . 百度学术
4. 都俐俐,张红兵,许守武,张凯丽,邱萍. Q345R钢焊缝区大气腐蚀行为研究. 材料开发与应用. 2022(06): 92-101 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 106
- HTML全文浏览量: 14
- PDF下载量: 24
- 被引次数: 4