Self-Reporting and Self-Healing Dual Functional Anticorrosive Coating based on Tannic Acid Additives
-
摘要: 通过一步合成法制备了负载单宁酸(TA)的显色、缓蚀双功能介孔二氧化硅纳米填料(TA-MSNs),将其掺杂到环氧涂层中,探究涂层的自预警和自修复性能。首先对TA的显色性能及缓蚀性能进行了表征,接着对TA-MSNs纳米填料的形貌结构以及TA的释放行为规律进行了探究,并综合分析纳米填料添加量对涂层自预警及自修复性能的影响规律。盐雾实验结果表明,涂层的自预警效果与填料含量呈正相关,5 %(w)以上的TA-MSNs添加量可赋予涂层明显的显色性能。电化学阻抗谱和表面分析结果表明,TA-MSNs在涂层中的含量为5 %时,破损涂层的低频阻抗模值比纯环氧破损涂层高出2个数量级。当涂层破损时,涂层中释放的TA分子能够与钢铁腐蚀形成的Fe3+发生络合,产生蓝黑色预警金属腐蚀,同时络合物可形成金属表面保护膜层,抑制了腐蚀反应的进一步发展。综上,添加5 % TA-MSNs的环氧涂层具有优异的自预警和自修复效果。Abstract: Tannic acid molecules are loaded into mesoporous silica nanoparticles (TA-MSNs) by one-step synthesis method to endow them with corrosion sensing and corrosion inhibition dual functions. TA-MSNs are added into the epoxy coatings to explore the self-reporting and self-healing performances of composite coatings. Firstly, the coloration and corrosion inhibition properties of TA are characterized. Then, the morphology and structure of TA-MSNs are investigated, and the release behaviors of TA from TA-MSNs studied. The influence of nanofiller content on the self-reporting and self-healing performances of coatings is comprehensively analyzed. Salt spray test indicates that the self-reporting effect of the coating is positively correlated with the filler content, and the addition of more than 5 %(w) TA-MSNs could give the coating obvious coloration effect. Electrochemical measurement and surface analysis show that the low-frequency impedance modulus (|Z|0.01 Hz) of the damaged coating with 5 % TA-MSNs is two orders of magnitude higher than that of the damaged blank epoxy coating. When the coating is damaged, TA molecules released in the coating can be complexed with Fe3+ formed during steel corrosion, resulting in blue-black coloration for corrosion reporting, and the complex adsorbed on the metal surface can form a protective film layer to inhibit further corrosion reaction. In summary, the epoxy coating with 5 % TA-MSNs possesses excellent self-reporting and self-healing performance.
-
Keywords:
- self-reporting coating /
- self-healing coating /
- tannic acid /
- corrosion inhibitor
-
-
[1] LI X G, ZHANG D W, LIU Z Y, et al. Materials science:share corrosion data[J]. Nature, 2015, 527:441-442.
[2] 冷文俊, 崔中雨, 王昕, 等. 低合金高强钢极地环境加速腐蚀试验谱编制与研究[J]. 材料开发与应用, 2023, 38(3):31-36. [3] 聂淑坤, 许凤玲, 刘钊慧, 等. 硫酸盐还原菌对船体低合金裸钢腐蚀行为的影响[J]. 材料开发与应用, 2023, 38(1):29-41. [4] JING Y, MENG F D, WANG F H, et al. Design of an anticorrosion/bactericidal dual functional organic coating based on the slippery liquid-infused porous surface[J]. Applied Surface Science, 2023, 639:158214.
[5] DING C D, TAI Y, WANG D, et al. Superhydrophobic composite coating with active corrosion resistance for AZ31B magnesium alloy protection[J]. Chemical Engineering Journal, 2019, 357:518-532.
[6] 祁伟健, 谢延凯, 汤一尧, 等. 典型有机防腐涂层研究进展[J]. 甘肃科技, 2023, 39(9):111-115. [7] LIU C B, CHENG L, QIAN B, et al. Corrosion self-warning and repair tracking of polymeric coatings based on stimulus responsive nanosensors[J]. Nan-oscale, 2022, 14(23):8429-8440.
[8] MA L W, REN C H, WANG J K, et al. Self-reporting coatings for autonomous detection of coating damage and metal corrosion:a review[J]. Chemical Engineering Journal, 2021, 421:127854.
[9] 周少魁, 郭宏磊, 顾林. 荧光涂层的设计、制备与应用研究进展[J]. 表面技术, 2021, 50(11):30-48. [10] WANG Y, WANG J K, HUANG L Y, et al. Photothermally activated self-healing coatings for corrosion protection:a review[J]. Progress in Organic Coa-tings, 2023, 185:107886.
[11] ZHANG F, JU P F, PAN M Q, et al. Self-healing mechanisms in smart protective coatings:a review[J]. Corrosion, 2018, 144:74-88.
[12] 许超, 肖调兵, 乔泽, 等. 智能防腐涂层的研究进展及其在国内核电领域的应用前景[J]. 腐蚀与防护, 2023, 44(4):65-71. [13] Y1 LD1 Z M, SAHINER N. Tannic acid for simple and highly selective visual detection of iron (II) and (III) ions from different aqueous environments[J]. Water, Air, & Soil Pollution, 2021, 232(5):201.
[14] WANG J K, TAN W M, YANG H, et al. Towards weathering and corrosion resistant, self-warning and self-healing epoxy coatings with tannic acid loaded nanocontainers[J]. NPJ Materials Degradation, 2023, 7:39.
[15] DEMENT'EVA O V.Mesoporous silica container particles:new approaches and new opportunities[J]. Colloid Journal, 2020, 82(5):479-501.
[16] YANG H, LIAO S J, HUANG C, et al. Facile one-pot approach to the synthesis of spherical mesoporous silica nanoflowers with hierarchical pore structure[J]. Applied Surface Science, 2014, 314:7-14.
[17] QIAN B, ZHENG Z, MICHAILIDS M, et al. Mussel-inspired self-healing coatings based on polydopamine-coated nanocontainers for corrosion protection[J]. ACS Applied Materials & Interfaces, 2019, 11(10):10283-10291.
[18] 周游, 周帅, 周江鸿, 等. 硅烷化氧化石墨烯/有机硅复合涂层的制备及性能[J]. 电镀与涂饰, 2023, 42(16):63-70. [19] RAMEZANZADEH B, NIROUMANDRAD S, AHMA-DI A, et al. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide[J]. Corrosion, 2016, 103:283-304.
[20] MA L W, WANG J K, ZHANG D W, et al. Dual-action self-healing protective coatings with pho-tothermal responsive corrosion inhibitor nanocontainers[J]. Che-mical Engineering Journal, 2021, 404:127118.
[21] 赵芳, 许立坤, 李相波. 铝粉含量对锌铝涂层微观形貌和耐蚀性的影响[J]. 材料开发与应用, 2012, 27(3):46-50. [22] 陶乃旺, 曾登峰, 王佳妮. 电解海水对环氧涂层防腐蚀性能的影响研究[J]. 材料开发与应用, 2021, 36(5):38-44.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: