Ti含量对Co39.2Ni39.2Al21.6-xTix双相高熵合金组织与力学性能的影响

贺一轩, 刘浩翔, 李名扬, 刘栩东, 李金山

贺一轩, 刘浩翔, 李名扬, 刘栩东, 李金山. Ti含量对Co39.2Ni39.2Al21.6-xTix双相高熵合金组织与力学性能的影响[J]. 材料开发与应用, 2024, 39(5): 55-62.
引用本文: 贺一轩, 刘浩翔, 李名扬, 刘栩东, 李金山. Ti含量对Co39.2Ni39.2Al21.6-xTix双相高熵合金组织与力学性能的影响[J]. 材料开发与应用, 2024, 39(5): 55-62.
HE Yixuan, LIU Haoxiang, LI Mingyang, LIU Xudong, LI Jinshan. Effect of Ti Content on Microstructure and Mechanical Properties of the Co39.2Ni39.2Al21.6-xTixDual-phase High Entropy Alloys[J]. Development and Application of Materials, 2024, 39(5): 55-62.
Citation: HE Yixuan, LIU Haoxiang, LI Mingyang, LIU Xudong, LI Jinshan. Effect of Ti Content on Microstructure and Mechanical Properties of the Co39.2Ni39.2Al21.6-xTixDual-phase High Entropy Alloys[J]. Development and Application of Materials, 2024, 39(5): 55-62.

Ti含量对Co39.2Ni39.2Al21.6-xTix双相高熵合金组织与力学性能的影响

基金项目: 

西安市科协青年人才托举计划项目

上海市扬帆计划项目(21YF1450800)

详细信息
    作者简介:

    贺一轩,男,1990年生,博士,副教授,博导,主要从事外场作用下金属凝固行为研究。E-mail:yxhe@nwpu.edu.cn

  • 中图分类号: TG146.2

Effect of Ti Content on Microstructure and Mechanical Properties of the Co39.2Ni39.2Al21.6-xTixDual-phase High Entropy Alloys

  • 摘要: 本研究设计并制备了成分为Co39.2Ni39.2Al21.6-xTix(x=2、4和6)的双相高熵合金。三种合金均为FCC-B2双相结构,FCC相中存在弥散的纳米级L12有序析出相,B2相中存在板条状L10马氏体相。随着Ti含量的增加,FCC相的体积分数、L12相的体积分数和尺寸均增大,B2相的体积分数减小。三种合金中,Co39.2Ni39.2-Al15.6Ti6合金具有最优的强塑性匹配,这来源于变形过程中B2相中应力诱发的马氏体相变和FCC相中L12有序析出相提供的高加工硬化率。本研究为通过合金化调控双相高熵合金组织,优化其综合力学性能提供了理论参考依据。
    Abstract: Three dual phase high entropy alloys with a composition of Co39.2Ni39.2Al21.6-xTix(x=2, 4, and 6) are prepared in this work. All the three alloys display an FCC-B2 dual phase structure. Dispersed nanoscale L12 ordered precipitate phases are presented in FCC, and lath-like L10 martensite presented in B2 phase. With the increase of Ti content, the volume fractions of FCC and L12 phases and size of L12 phase increase, and the volume fraction of B2 phase decreases. The Co39.2Ni39.2Al15.6Ti6 alloy shows the most excellent combination of strength and ductility. The high strength and plasticity come from the stress induced martensitic transformation in the B2 phase during the deformation process, and the high work hardening rate provided by the L12 ordered precipitate phase in the FCC phase. This work provides a theoretical reference for designing the microstructure of the dual phase high entropy alloys through alloying to enhance their comprehensive mechanical properties.
  • [1] 侯丽丽, 郭强, 要玉宏, 等. 退火态CoFeNiCrMnBx高熵合金微观组织和力学性能[J]. 材料开发与应用, 2023,38(2): 44-48.
    [2] 李兆峰, 蒋鹏, 杨学东. TiCu0.5Al0.5Cr0.2Ni0.1高熵合金微观组织及性能研究[J]. 材料开发与应用, 2020, 35(3): 10-15.
    [3]

    KANG B, KONG T, RYU H J, et al. Superior mechanical properties and strengthening mechanisms of lightweight AlxCrNbVMo refractory high-entropy alloys(x=0, 0.5, 1.0) fabricated by the powder metallurgy process[J]. Journal of Materials Science& Technology, 2021, 69: 32-41.

    [4]

    CUI D C, ZHANG Y Y, LIU L X, et al. Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy[J]. Journal of Materials Science & Technology, 2023, 157: 11-20.

    [5]

    LU Y P, GAO X Z, JIANG L, et al. Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J]. Acta Materialia,2017, 124: 143-150.

    [6]

    LU Y P, DONG Y, JIANG H, et al. Promising properties and future trend of eutectic high entropy alloys[J]. Scripta Materialia, 2020, 187: 202-209.

    [7]

    LU Y P, DONG Y, GUO S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys[J]. Scientific Reports, 2014, 4: 6200.

    [8]

    GAO X Z, LU Y P, ZHANG B, et al. Microstruc-tural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy[J]. Acta Materialia, 2017, 141: 59-66.

    [9]

    WU Q F, HE F, LI J J, et al. Phase-selective recrystallization makes eutectic high-entropy alloys ultra-ductile[J]. Nature Communications, 2022, 13: 4697.

    [10]

    SHI P, LI R, LI Y, et al. Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys[J]. Science, 2021, 373(6557): 912-918.

    [11]

    WANG M Z, WEN Z Q, LIU J X, et al. Synergistic effect of Zr and Hf alloying on cross fluvial microstructure of CoCrFeNi eutectic high-entropy alloys[J]. Materials Letters, 2023, 345: 134416.

    [12]

    JIA Y H, WANG Z J, WU Q F, et al. Boron mic-roalloying for high-temperature eutectic high-entropy alloys[J].Acta Materialia, 2024, 262: 119427.

    [13]

    LIU H X, BIAN Z C, WU Y H, et al. Achieving excellent strength-ductility combination in Co60.8-xNi39.2Alx eutectic medium-entropy alloys[J]. Materials Scienceand Engineering:A, 2023, 886: 145720.

    [14]

    LE P D D. Small molecule X-ray crystallography, theory and workflow[M]//Encyclopedia of Spectroscopy and Spectrometry. Amsterdam: Elsevier, 2010: 2559-2576.

    [15]

    EFSTATHIOU C, SEHITOGLU H, WAGONER J A J, et al. Large reduction in critical stress in Co-Ni-Al upon repeated transformation[J]. Scripta Materialia, 2004, 51(10): 979-985.

    [16]

    MAZIARZ W. Structure changes of Co-Ni-Al ferromagnetic shape memory alloys after vacuum annealing and hot rolling[J]. Journal of Alloys and Compounds, 2008, 448(1-2): 223-226.

    [17]

    ZHANG L, CHEN S, FU H M, et al. Tailoring modulus and hardness of in situ formed β-Ti in bulk metallic glass composites by precipitation of isothermal ω-Ti[J]. Materials&Design, 2017, 133: 82-90.

    [18]

    SUN G A, WANG X L, WANG Y D, et al. In-situ high-energy synchrotron X-ray diffraction study of micromechanical behavior of multiple phases in Ni47Ti44Nb9 shape memory alloy[J]. Materials Science and Engineering:A, 2013, 560: 458-465.

计量
  • 文章访问数:  73
  • HTML全文浏览量:  1
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-25
  • 网络出版日期:  2024-11-19

目录

    /

    返回文章
    返回