Study on Calculation Method of Underwater Sound Vibration of Sandwich Plate under Double-Sided Hydrostatic Pressure
-
摘要: 随着潜艇工作深度不断增加,含点阵增强柱和空腔的复合材料夹芯板因其高强度和声振性能可设计性强的优良特性逐渐被应用于外部壳体结构。为建立一种考虑双面静水压的含点阵增强柱和空腔的复合材料夹芯板水下声振计算方法,研究高潜深环境下双面高静水压对围壳等内部充水结构声振性能的影响,本研究利用多层次均质化等效方法将含增强柱和空腔的水下复合材料夹芯板芯层等效为正交各向异性材料,得到均质夹芯板模型,然后基于应变能密度相等将横向双面静水压等效为面内均布载荷,对基于LW理论模型的均质夹芯板的水下振动方程进行修正,进而提出了一种考虑双面静水压的含点阵增强柱和空腔的复合材料板水下声振计算方法。最后,利用数值计算方法对本研究方法的准确性进行了验证,结果表明理论解与数值解吻合较好。该方法可以较准确的预报双面静水压对含点阵增强柱和空腔的复合材料夹芯板声振性能的影响。Abstract: With the increasing working depth of submarines, composite sandwich panels with lattice-reinforced columns and cavities are gradually applied into external shell structures due to their excellent characteristics of high strength and designability of acoustic vibration performance. In order to establish an underwater acoustic vibration calculation method for composite sandwich panels with lattice-reinforced columns and cavities considering double-sided hydrostatic pressure, the effect of high hydr-ostatic pressure on the acoustic vibration performance of the internal water-filled structures such as the enclosure shell under high diving depth is studied. Firstly, the multi-level homogenization equivalence method is used to treat the core layer of the submerged composite sandwich panel with reinforced columns and cavities as an orthogonal anisotropic material to obtain a homogeneous sandwich panel model. Secondly the transverse double-sided hydrostatic pressure is treated as the circumferential homogeneous load based on the strain energy density equality, and the underwater vibration equation of the homogeneous sandwich panel based on the LW theory model is modified. A method is proposed to calculate the underwater acoustic vibration of composite plate with lattice-reinforced columns and cavities considering the two-sided hydrostatic pressure. Finally, the accuracy of the method is verified using by numerical calculation methods. It is found out that the theoretical solution agrees well with the numerical solution. The method can predict the effect of two-sided hydrostatic pressure on the acoustic vibration performance of composite sandwich panels with lattice-reinforced columns and cavities accurately.
-
-
[1] 纪刚, 张纬康, 周其斗. 静水压力作用的水下结构振动及声辐射[J]. 中国造船, 2006, 47(3):37-44. [2] ZHAO Y H, WENG G J. Effective elastic moduli of ribbon-reinforced composites[J]. Journal of Applied Mechanics, 1990, 57(1):158-167.
[3] 周志伟. 含点阵增强柱和空腔的复合夹芯板水下声振计算方法及性能研究[D]. 武汉:华中科技大学, 2021. [4] 黄耀英, 王润富, 吴中如. 无限均布压力作用下弹性地基的应力和位移[J]. 河海大学学报(自然科学版), 2007, 35(5):518-523. [5] 李华东, 朱锡, 梅志远, 等. 静水压力作用下夹芯板结构的变形规律分析[J]. 华中科技大学学报(自然科学版), 2010, 38(11):119-123. [6] 邱家波, 梅志远. 深水静压载荷作用下多层夹芯结构相似特性分析[J]. 船舶工程, 2012, 34(1):65-68. [7] 杨坤, 梅志远, 李华东. 深水静压环境中夹芯结构PUEPM芯材蠕变特性实验研究[J]. 材料工程, 2012, 40(1):51-54. [8] 武大江, 梅志远, 周晓松. 深水静压下混杂夹芯复合结构形变及强度特性[J]. 中国舰船研究, 2015, 10(5):47-52. [9] 陈悦, 朱子旭, 李永清, 等. 夹层复合材料耐压圆柱壳深水静压承载特性分析[J]. 海军工程大学学报, 2018, 30(2):83-87. [10] 刘誉东, 罗浩, 朱俊. 点阵增强泡沫夹芯复合材料静水压作用下力学行为研究[J]. 材料开发与应用, 2022, 37(1):21-28. [11] 李凯, 俞孟萨. 大潜深耐压球壳结构的声振耦合特性研究[J]. 船舶力学, 2022, 26(4):584-594. [12] KELTIE R F. The effect of hydrostatic pressure fields on the structural and acoustic response of cylindrical shells[J]. The Journal of the Acoustical Society of America, 1986, 79(3):595-603.
[13] 刘志忠. 静压条件下圆柱壳-流场耦合系统振动功率流和声辐射特性研究[D]. 武汉:华中科技大学, 2009. [14] ZHANG Y L, GORMAN D G, REESE J M. Vibration of prestressed thin cylindrical shells conveying fluid[J]. Thin-Walled Structures, 2003, 41(12):1103-1127.
[15] 余建星, 李振眠, 余杨, 等. 轴力和水压作用下深水输液管道湿模态振动特性分析[J]. 振动与冲击, 2021, 40(12):90-96. [16] 沈观林, 胡更开, 刘彬. 复合材料力学[M]. 2版. 北京:清华大学出版社, 2013:264-276. [17] 徐芝纶. 弹性力学-下册[M]. 4版. 北京:高等教育出版社, 2006:100-103. -
期刊类型引用(1)
1. 蒋国璋,刘朴湧,张严,段现银,谢寒冰. 面向增材制造的新型蜂窝夹芯结构拓扑优化设计. 粉末冶金工业. 2024(04): 134-140 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 190
- HTML全文浏览量: 28
- PDF下载量: 47
- 被引次数: 1