Effect of Sulfate-Reducing Bacteria on Corrosion Behavior of the Low-alloy Bare Steel for Hull
-
摘要: 船体舱室底部存积的油污水为腐蚀微生物的生长繁殖提供了有利条件。为了研究腐蚀微生物硫酸盐还原菌(SRB)对某新型船体低合金钢腐蚀的影响,采用荧光显微技术、失重分析、电化学分析、腐蚀产物成分分析及微区成分分析等手段,研究了取自舱底环境中分离提纯的SRB对船体低合金钢腐蚀行为的影响。结果表明,在SRB腐蚀初期,胞外聚合物(EPS)对全面腐蚀有一定的抑制作用,但随着时间的延长,铁硫化合物层可作为阴极与裸露部位的小阳极发生反应,加上SRB的共同作用,加速局部破裂处的阳极溶解,促进点蚀。在整个浸泡周期内,船体低合金钢在SRB介质中的腐蚀电流密度均大于灭菌介质中的,且年平均腐蚀速率是灭菌介质中的1.36倍。Abstract: In some cabins inside the hull, oil and sewage are often accumulated at the bottom of the cabin due to the oil leakage of shafting and piping and the domestic sewage not cleaned in time, which provides favorable conditions for the growth and reproduction of corrosive microorganisms. The effect of sulfate-reducing bacteria (SRB), isolated and purified from bilge environment, on the corrosion of the new-type hull low alloy steel is studied by means of fluorescence microscopy, weight loss analysis, electrochemical analysis, corrosion product composition analysis and composition analysis. The results show that in the initial stage of SRB corrosion, extracellular polymer substances (EPS) have a certain inhibitory effect on the overall corrosion. However, with the extension of time, the iron sulfur compound layer can act as the cathode, together with the small anode at the exposed part and the SRB, it can accelerate the dissolution of the anode at the fracture and promote pitting corrosion. Within the 14 days of period, the corrosion current density in the SRB medium is greater than that in the sterilization medium, and the annual average corrosion rate is 1.36 times of that in the sterilization medium.
-
-
[1] 王毅,张盾.船舶微生物腐蚀与防护研究进展[J].装备环境工程, 2018, 15(10):33-38. [2] COPENHAGEN W J. Accelerated corrosion of ship's bottom plate[J]. British Corrosion Journal, 1966, 1(9):344.
[3] CLELAND J H. Corrosion risks in ships' ballast tanks and the IMO pathogen guidelines[J]. Engineering Failure Analysis, 1995, 2(1):79-84.
[4] 陈德斌,胡裕龙,陈学群.舰船微生物腐蚀研究进展[J].海军工程大学学报, 2006, 18(1):79-84. [5] MART P.MIC in naval vessels[C]. Perth:Proceedings of the MIC-An International Perspective Symposium, 2007.
[6] DUAN J Z, WU S S, ZHANG X J, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater[J]. Electrochimica Acta, 2008, 54(1):22-28.
[7] 刘宏芳,刘烈炜,许立铭,郑家燊.生物膜对碳钢腐蚀的影响[J].中国腐蚀与防护学报, 1999, 19(5):291-295. [8] 陈六平.生物膜与生物污损[J].腐蚀与防护, 1996, 17(1):3-8. [9] LEE W, CHARACKLIS W G. Corrosion of mild steel under anaerobic biofilm[J]. CORROSION, 1993, 49(3):186-199.
[10] 万红霞,李婷婷,宋东东,等. X80管线钢在硫酸盐还原菌作用下的腐蚀行为[J].表面技术, 2020, 49(9):281-290. [11] 黄烨,刘双江,姜成英.微生物腐蚀及腐蚀机理研究进展[J].微生物学通报, 2017, 44(7):1699-1713. [12] 舒韵,闫茂成,魏英华,等. X80管线钢表面SRB生物膜特征及腐蚀行为[J].金属学报, 2018, 54(10):1408-1416. [13] 王正泉,徐玮辰,周子扬,等. X65管线钢在成品油管道沉积物中的微生物腐蚀行为[J].表面技术, 2020, 49(7):245-254. [14] YAN M, SUN C, XU J, et al. Electrochemical behavior of API X80 steel in acidic soils from Southeast China[J]. International Journal of Electrochemical Science, 2015, 10(2):1762-1776.
[15] 李付绍.硫酸盐还原菌生物膜下钢铁材料腐蚀行为的研究[D].哈尔滨:哈尔滨工业大学, 2009. [16] KING R A, MILLER J D A, SMITH J S. Corrosion of mild steel by iron sulphides[J]. British Corrosion Journal, 1973, 8(3):137-141.
[17] WU T Q, YAN M C, ZENG D C, et al. Microbiologically induced corrosion of X80 pipeline steel in a ne-arneutral pH soil solution[J]. Acta Metallurgica Sinica (English Letters), 2015, 28(1):93-102.
[18] JIN J T. Effect of extracellular polymeric substances on corrosion of cast iron in the reclaimed wastewater[J]. Bioresource Technology, 2014, 165:162-165.
[19] DONG Z H, LIU T, LIU H F. Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27(5):487-495.
[20] 温相丽.铁和硫铁化合物表面H2S吸附/解离及扩散机制的理论研究[D].北京:中国石油大学(北京), 2019. [21] BEECH I B, CAMPBELL S A. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment[J]. Electrochimica Acta, 2008, 54(1):14-21.
[22] BOUDAUD N, COTON M, COTON E, et al. Biodiversity analysis by polyphasic study of marine bacteria associated with biocorrosion phenomena[J]. Journal of Applied Microbiology, 2010, 109(1):166-179.
[23] JEFFREY R, MELCHERS R E. Bacteriological influence in the development of iron sulphide species in marine immersion environments[J]. Corrosion Science, 2003, 45(4):693-714.
[24] MALARD E, KERVADEC D, GIL O, et al. Interactions between steels and sulphide-producing bacteria-corrosion of carbon steels and low-alloy steels in natural seawater[J]. Electrochimica Acta, 2008, 54(1):8-13.
[25] MELCHERS R E. Transient early and longer term influence of bacteria on marine corrosion of steel[J]. Corrosion Engineering, Science and Technology, 2010, 45(4):257-261.
计量
- 文章访问数: 166
- HTML全文浏览量: 63
- PDF下载量: 26