Influence of Geometric Characteristics on Fatigue Behavior and Life Evaluation of Deep-water Platform Welding Structures
-
摘要: 疲劳损伤是引起深水平台结构破坏的主要原因,针对海上常用钢EH36进行对接和T型焊接接头的疲劳寿命测试,证明接头形式是影响疲劳寿命的主要原因。同时焊接接头的疲劳寿命具有强烈的疲劳分散性,随着应力范围的降低,疲劳寿命的分散程度逐渐增大,T型焊接接头的疲劳分散程度大于对接焊接接头的。通过DIC对焊接接头疲劳行为进行监测,结果发现,T型焊接接头表现出了更大的应力集中程度和应力梯度效应,焊趾形貌和应力范围是影响焊接接头疲劳寿命分散程度的主要原因。在热点疲劳寿命评估中,0.4t~1.0t外推点表现出更为精准和有效的计算结果,但是热点应力具有一定的网格敏感性,疲劳设计时需要根据推荐的网格大小进行划分。Abstract: Fatigue damage is the main cause for the structural damage of the deep-water platform. The fatigue life test of the butt and T-welded joints of the EH36 steel commonly used at sea proves that the joint form is the main reason affecting the fatigue life. Besides, the fatigue life of the welded joints has strong fatigue dispersion. With the decrease of the stress range, the fatigue life dispersion degree increases gradually. The fatigue dispersion degree of the T-welded joint is greater than that of the butt welded joint. The coupled digital image correlation(DIC) monitoring of the fatigue behaviors of the welded joints shows that the T-shaped welded joint shows greater stress concentration and stress gradient effect, and that the shape of the weld toe and stress range are the main reasons affecting the fatigue life dispersion degree of the welded joints. In the evaluation of the hot spot fatigue life, the 0.4t-1.0t extrapolation points have more accurate and effective calculation results, but the hot spot stress has to be divided according to the recommended grid size in the fatigue design.
-
Keywords:
- welded joint /
- stress concentration /
- hot spot stress /
- fatigue life evaluation
-
-
[1] 罗超, 亢武臣, 薛钊, 等. 我国深海油气工程核心技术与装备国产化挑战及对策[J]. 舰船科学技术, 2022, 44(23): 74-79. [2] 米立军, 周守为, 谢玉洪, 等. 南海北部深水区油气勘探进展与未来展望[J]. 中国工程科学, 2022, 24(3): 58-65. [3] 陈秉智, 何正平, 李向伟, 等. 某构件焊缝疲劳开裂的寿命预测方法应用对比[J]. 焊接学报, 2022, 43(5): 63-68. [4] CAMPAGNOLO A, BELLUZZO F, YıLDıRıM H C, et al. Fatigue strength assessment of as-welded and HFMI treated welded joints according to structural and local approaches[J]. International Journal of Fatigue, 2022, 155: 106584.
[5] LIU P H, CHEN I Y, LIU X Q, et al. Stress influ-ence matrix on hot spot stress analysis for welded tubular joint in offshore jacket structure[J]. Ocean Engineering, 2022, 251: 111103.
[6] 徐双喜, 佟哲, 曹俊伟, 等. 船用铝合金5059的典型焊接节点疲劳试验和寿命预报方法研究[J]. 船舶力学, 2022, 26(12): 1823-1839. [7] 回屹, 马冲, 易泽川. 焊接疲劳分析方法研究进展[J]. 中国金属通报, 2022(7): 156-158. [8] 彭凡, 姚云建, 顾勇军. 热点应力法评定焊接接头疲劳强度的影响因素[J]. 焊接学报, 2010, 31(7): 83-86. [9] 谢莹莹, 张迪, 杨红伟, 等. P355NL1钢双丝MAG焊接头组织及力学性能[J]. 焊接技术, 2022, 51(8): 29-32. [10] 陈亚军, 孙胜洁, 季春明. 三维数字图像相关技术(3D DIC)在材料形变研究中的应用进展[J]. 航空材料学报, 2017, 37(4): 90-100. [11] 曹蕾蕾, 王严, 王留涛, 等. 大型焊接结构疲劳寿命评估研究综述[J]. 机械强度, 2022, 44(6): 1443-1454. [12] CUI C, ZHANG Q H, BAO Y, et al. Fatigue performance and evaluation of welded joints in steel truss bridges[J]. Journal of Constructional Steel Research, 2018, 148: 450-456.
[13] 张清华, 魏川, 徐召, 等. 钢桁梁整体焊接节点疲劳性能模型试验[J]. 中国公路学报, 2022, 35(12): 77-90. [14] 张欣, 高世一, 吴文兵, 等. 焊缝余高对焊接接头疲劳寿命影响的有限元分析[J]. 热加工工艺, 2017, 46(1): 189-194. [15] 徐连勇, 彭晨涛, 赵雷, 等. 深水浮体平台焊接结构疲劳性能测试方法[J]. 焊接学报, 2022, 43(11): 84-90. [16] 魏国前, 罗玉兵, 黄发超, 等. 考虑焊趾形貌的十字焊接接头疲劳评定研究[J]. 机械强度, 2018, 40(2): 418-423. [17] 杨昔科, 张燕, 何明艳, 等. 基于热点应力的发电机转子线圈焊接疲劳评估[J]. 电机技术, 2020(6): 1-6. [18] 李义明, 聂飞龙. 基于热点应力法的新型插板接头疲劳寿命评估[J]. 港口装卸, 2022(3): 28-32. [19] 王连成, 赵文斌, 叶旭. 测深管贯穿甲板热点应力集中系数计算[J]. 船舶设计通讯, 2021(1): 44-48. [20] 林海花, 孙承猛, 石强. KK型管节点应力集中系数几何敏感性分析[J]. 海洋工程, 2020, 38(6): 142-150. -
期刊类型引用(1)
1. 丁鹏龙,成应晋,何亮. 甲板分段焊接变形仿真与控制. 材料开发与应用. 2023(01): 9-16 . 本站查看
其他类型引用(0)
计量
- 文章访问数: 118
- HTML全文浏览量: 24
- PDF下载量: 25
- 被引次数: 1