Investigation on Corrosion Resistance of Mg-Al-Zn Alloy Joint by Laser Beam Welding
-
摘要: 分别采用激光焊和激光填丝焊2种方法对4 mm厚的Mg-Al-Zn合金进行焊接,并对镁合金接头的腐蚀机理进行了探讨。采用极化曲线测量、电化学阻抗谱测试、SEM观察和EDS分析等方法,对获得的激光焊接头(LBW)和激光填丝焊接头(LBW-F)在3.5%NaCl溶液中的腐蚀行为进行研究,并与母材(BM)的耐蚀性进行对比,结果表明,腐蚀产物主要由Mg(OH)2和碳酸盐组成,3种试样的耐蚀性由高至低为:LBW接头>LBW-F接头>BM母材。
-
关键词:
- Mg-Al-Zn合金 /
- 激光焊 /
- 激光填丝焊 /
- 电化学腐蚀 /
- 腐蚀机理
Abstract: The 4 mm thick Mg-Al-Zn alloy plate is welded by using laser beam welding (LBW) and laser beam welding with filler wire (LBW-F), respectively. The corrosion mechanism of the Mg-Al-Zn alloy joint is discussed. Some technical means involving polarization curve measurement, electrochemical impedance spectroscopy test, scanning electron microscopy (SEM) observation and energy dispersive spectroscopy (EDS) analysis are employed. The corrosion behavior of the LBW and LBW-F joints in the 3.5%NaCl aqueous solution is investigated, and is compared with that of the base metal (BM). Results show that the corrosion product is mainly composed of Mg(OH)2 and carbonate, and that the corrosion resistance relationship of the joints and BM can be expressed as LBW joint >LBW-F joint >BM. -
[1] WANG Z M, GAO M, TANG H G, et al. Characterization of AZ31B wrought magnesium alloy joints welded by high power fiber laser[J]. Materials Characterization, 2011, 62(10): 943-951. [2] YU H, SUN Y, WAN Z P, et al. Nanocrystalline Ti/AZ61 magnesium matrix composite: evolution of microstructure and mechanical property during annealing treatment[J]. Journal of Alloys and Compounds, 2018, 741: 231-239. [3] FELIU S, SAMANIEGO A, EL-HADAD A A, et al. The effect of NaHCO3 treatment time on the corrosion resistance of commercial magnesium alloys AZ31 and AZ61 in 0.6M NaCl solution[J]. Corrosion Science, 2013, 67: 204-216. [4] 宋光铃. 镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006. [5] AUNG N N, ZHOU W. Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy[J]. Corrosion Science, 2010, 52(2): 589-594. [6] ALVAREZ-LOPEZ M, PEREDA M D, DEL VALLE J A, et al. Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids[J]. Acta Biomaterialia, 2010, 6(5): 1763-1771. [7] LOPES D R, SILVA C L P, SOARES R B, et al. Cytotoxicity and corrosion behavior of magnesium and magnesium alloys in hank’s solution after processing by high-pressure torsion[J]. Advanced Engineering Materials, 2019, 21(8): 1-9. [8] BIRBILIS N, RALSTON K D, VIRTANEN S, et al. Grain character influences on corrosion of ECAPed pure magnesium[J]. Corrosion Engineering, Science and Technology, 2010, 45(3): 224-230. [9] TIAN Y, YANG L J, LI Y F, et al. Corrosion behaviour of Die-cast AZ91D magnesium alloys in sodium sulphate solutions with different pH values[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(4): 912-920. [10] 沈明学, 陈跃峰. 体育器械用AZ91镁合金的耐腐蚀行为研究[J]. 铸造技术, 2014, 35(8): 1678-1680. [11] WAGENER V, VIRTANEN S. Protective layer formation on magnesium in cell culture medium[J]. Materials Science and Engineering: C, 2016, 63: 341-351. [12] EL-TAIB HEAKAL F, BAKRY A M. Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting[J]. Materials Chemistry and Physics, 2018, 220: 35-49. [13] JAFARZADEH K, SHAHRABI T, OSKOUEI A A. Novel approach using EIS to study flow accelerated pitting corrosion of AA5083-H321 aluminum–magnesium alloy in NaCl solution[J].Journal of Applied Electrochemistry, 2009, 39(10): 1725-1731.
点击查看大图
计量
- 文章访问数: 101
- HTML全文浏览量: 9
- PDF下载量: 31
- 被引次数: 0