Effect of Annealing Temperature on Microstructure and Properties of Thin Titanium Alloy Plate for Proton Exchange Membrane Fuel Cell
-
摘要: 本研究对冷轧态Ti-Ni-Nb-Ta钛合金薄板在660~860 ℃范围内进行退火,研究了晶粒尺寸、析出物形态及分布、晶界类型对钛合金薄板力学性能和耐腐蚀性能的影响。结果表明,冷轧态钛合金薄板晶粒变形严重,析出相(Ti2Ni)呈长条状分布在基体中;钛合金薄板组织在退火过程中发生静态再结晶,形成等轴晶。当退火温度为660~760 ℃时,随着退火温度的升高,平均晶粒尺寸增加,Ti2Ni部分溶解。当退火温度为860 ℃时,Ti2Ni颗粒完全溶解在基体中,同时β相在晶界处形核,阻止α相进一步长大,平均晶粒尺寸减小。冷轧态钛合金薄板的屈服强度和抗拉强度最高,分别为691.74 MPa和781.68 MPa,断后伸长率最低,为9.62%。当退火温度为660 ~ 860 ℃时,钛合金薄板的屈服强度和抗拉强度随着温度的升高先降低后升高,断后伸长率则先升高后降低。与冷轧态的相比,退火后钛合金薄板的耐腐蚀性提高,其中760 ℃退火后钛合金薄板的腐蚀电流密度和稳态电流密度最低,分别为2.55×10-8 A·cm-2和0.36 μA·cm-2。Abstract: The effects of grain size, precipitate morphology and distribution, grain boundary type on the mechanical properties and corrosion resistance of the cold-rolled Ti-Ni-Nb-Ta titanium alloy sheets annealed in the temperature range of 660-860 ℃ are investigated. The results indicate that the grain deformation of the cold-rolled thin plate is severe, and that the precipitated phase (Ti2Ni) is distributed in long strip in the matrix. A static recrystallization process occurs in the plate in the course of annealing. When the annealing temperature is 660-760 ℃, the average grain size increases with the rise of temperature, and some of Ti2Ni phases dissolute. When the annealing temperature is 860 ℃, the Ti2Ni particles are completely dissolved in the matrix, and the β phase nucleates at the grain boundaries, preventing the further growth of α phase, therefore, the average grain size decreases. The yield and tensile strengths of the cold-rolled titanium alloy sheet are the highest, 691.74 MPa and 781.68 MPa, respectively, while the elongation is 9.62%, the lowest. With the increase of temperature from 660 ℃ to 860 ℃, the yield and tensile strengths decreases first and then increases, and the percentage elongation after fracture increases first and then decreases. Compared with the cold-rolled thin titanium alloy sheet, the sheet annealed has better corrosion resistance. The corrosion current density and stable current density of the titanium alloy sheet annealed at 760 ℃ are the lowest, 2.55×10-8 A·cm-2 and 0.36 μA·cm-2, respectively.
-
-
[1] DAUD W R W, ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control: a review[J]. Renewable Energy, 2017, 113: 620-638.
[2] ASRI N F, HUSAINI T, SULONG A B, et al. Coa-ting of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: a review[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9135-9148.
[3] WANG L, TAO Y K, ZHANG Z, et al. Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4940-4950.
[4] WANG Y L, ZHANG S H, WANG P, et al. Syn-thesis and corrosion protection of Nb doped TiO2 nanopowders modified polyaniline coating on 316 stainless steel bipolar plates for proton-exchange membrane fuel cells[J]. Progress in Organic Coatings, 2019, 137: 105327.
[5] WU J F, YUAN X Z, MARTIN J J, et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119.
[6] ZHANG P C, HAO C M, HAN Y T, et al. Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell[J]. Surface and Coatings Technology, 2020, 397: 126064.
[7] ZHAO J, LI X G. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques[J]. Energy Conversion and Management, 2019, 199: 112022.
[8] PENG L F, YI P Y, LAI X M. Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21127-21153.
[9] YI P Y, ZHANG D, QIU D K, et al. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6813-6843.
[10] WANG H, TURNER J A. Reviewing metallic PEMFC bipolar plates[J]. Fuel Cells, 2010, 10(4): 510-519.
[11] FU A, GUO W M, LIU B, et al. A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties[J]. Journal of Alloys and Compounds, 2020, 815: 152466.
[12] JIN J, HE Z, ZHAO X H. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4V bipolar plates for PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12489-12500.
[13] SONG Y X, ZHANG C Z, LING C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29832-29847.
[14] SEDRIKS A J, GREEN J A S, NOVAK D L. Electrochemical behavior of Ti-Ni alloys in acidic chloride solutions[J]. Corrosion, 1972, 28(4): 137-142.
[15] GLASS R S. Effect of intermetallic Ti2Ni on the electrochemistry of TiCODE-12 in hydrochloric acid[J]. Electrochimica Acta, 1983, 28(11): 1507-1513.
[16] OZAN S, LIN J X, ZHANG Y W, et al. Cold rolling deformation and annealing behavior of a β-type Ti-34Nb-25Zr titanium alloy for biomedical applications[J]. Journal of Materials Research and Technology, 2020, 9(2): 2308-2318.
[17] WANG X, PAN Y, YANG J H, et al. Corrosion behavior of Ti-0.3Mo-0.8Ni (TA10) alloy in proton exchange membrane fuel cell environment: Experimental and theoretical studies[J]. International Journal of Electrochemical Science, 2023, 18(9): 100239.
[18] SEO B, PARK H K, PARK C S, et al. Effect of alloying elements on corrosion properties of high corrosion resistant titanium alloys in high concentrated sulfuric acid[J]. Materials Today Communications, 2023, 34: 105131.
[19] SUN R L, XIA Z X, YANG C R, et al. Experimental measurement of proton conductivity and electronic conductivity of membrane electrode assembly for proton exchange membrane fuel cells[J]. Progress in Natural Science: Materials International, 2020, 30(6): 912-917.
[20] AUKLAND N, BOUDINA A, EDDY D S, et al. All-oys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates[J]. Journal of Materials Research, 2004, 19(6): 1723-1729.
[21] KIM H S, YOO S J, AHN J W, et al. Ultrafine gra-ined titanium sheets with high strength and high corrosion resistance[J]. Materials Science and Engineering: A, 2011, 528(29-30): 8479-8485.
[22] KIM W J, YOO S J, JEONG H T, et al. Effect of the speed ratio on grain refinement and texture development in pure Ti during differential speed rolling[J]. Scripta Materialia, 2011, 64(1): 49-52.
[23] KIM H S, KIM W J. Annealing effects on the corrosion resistance of ultrafine-grained pure titanium[J]. Corrosion Science, 2014, 89: 331-337.
[24] HOSEINI M, SHAHRYARI A, OMANOVIC S, et al. Comparative effect of grain size and texture on the co-rrosion behaviour of commercially pure titanium processed by equal channel angular pressing[J]. Corrosion Science, 2009, 51(12): 3064-3067.
[25] DULL D L, RAYMOND L. Thermal and mechanical effects on the corrosion behavior of Ti-6Al-4V alloy[J]. Journal of the Electrochemical Society, 1973, 120(12): 1632.
[26] ZHU H F, WANG X P, MENG W, et al. Effect of annealing time on microstructure and properties of Ti-Nb-Ni sheets as bipolar plates substrates[J]. International Journal of Hydrogen Energy, 2024, 57: 1263-1272.
[27] OTSUKA K, REN X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50(5): 511-678.
[28] ZHU H F, WANG X P, MENG W, et al. Evolution of Ti2Ni precipitations during annealing and their effects on properties of Ti-Nb-Ni foil as PEMFC bipolar plates substrate[J]. International Journal of Hydrogen Energy, 2023, 48(39): 14822-14836.
[29] WU G C, LI S Y, LI J H, et al. Texture evolution during multi-pass cold rolling and annealing of Ti-2Al-1.5Mn alloy[J]. Journal of Alloys and Compounds, 2024, 971: 172705.
[30] TANG J, LUO H Y, QI Y M, et al. Effect of nano-scale martensite and β phase on the passive film formation and electrochemical behaviour of Ti-10V-2Fe-3Al alloy in 3.5% NaCl solution[J]. Electrochimica Acta, 2018, 283: 1300-1312.
计量
- 文章访问数: 32
- HTML全文浏览量: 2
- PDF下载量: 4