退火温度对质子交换膜燃料电池钛合金薄板组织及性能影响研究

焦晶晶, 朱文祥, 李嘉舒, 李卓程, 王丙兴, 王斌, 田勇

焦晶晶, 朱文祥, 李嘉舒, 李卓程, 王丙兴, 王斌, 田勇. 退火温度对质子交换膜燃料电池钛合金薄板组织及性能影响研究[J]. 材料开发与应用, 2025, 40(2): 31-39.
引用本文: 焦晶晶, 朱文祥, 李嘉舒, 李卓程, 王丙兴, 王斌, 田勇. 退火温度对质子交换膜燃料电池钛合金薄板组织及性能影响研究[J]. 材料开发与应用, 2025, 40(2): 31-39.
JIAO Jingjing, ZHU Wenxiang, LI Jiashu, LI Zhuocheng, WANG Bingxing, WANG Bin, TIAN Yong. Effect of Annealing Temperature on Microstructure and Properties of Thin Titanium Alloy Plate for Proton Exchange Membrane Fuel Cell[J]. Development and Application of Materials, 2025, 40(2): 31-39.
Citation: JIAO Jingjing, ZHU Wenxiang, LI Jiashu, LI Zhuocheng, WANG Bingxing, WANG Bin, TIAN Yong. Effect of Annealing Temperature on Microstructure and Properties of Thin Titanium Alloy Plate for Proton Exchange Membrane Fuel Cell[J]. Development and Application of Materials, 2025, 40(2): 31-39.

退火温度对质子交换膜燃料电池钛合金薄板组织及性能影响研究

详细信息
    作者简介:

    焦晶晶,女,2001年生,硕士研究生,研究方向为钛合金轧制变形及热处理工艺。E-mail:jingjingjiao2022@163.com

    通讯作者:

    王丙兴,男,1979年生,教授,研究方向为金属材料成形工艺。E-mail:wangbx@ral.neu.edu.cn

  • 中图分类号: TG146.21

Effect of Annealing Temperature on Microstructure and Properties of Thin Titanium Alloy Plate for Proton Exchange Membrane Fuel Cell

  • 摘要: 本研究对冷轧态Ti-Ni-Nb-Ta钛合金薄板在660~860 ℃范围内进行退火,研究了晶粒尺寸、析出物形态及分布、晶界类型对钛合金薄板力学性能和耐腐蚀性能的影响。结果表明,冷轧态钛合金薄板晶粒变形严重,析出相(Ti2Ni)呈长条状分布在基体中;钛合金薄板组织在退火过程中发生静态再结晶,形成等轴晶。当退火温度为660~760 ℃时,随着退火温度的升高,平均晶粒尺寸增加,Ti2Ni部分溶解。当退火温度为860 ℃时,Ti2Ni颗粒完全溶解在基体中,同时β相在晶界处形核,阻止α相进一步长大,平均晶粒尺寸减小。冷轧态钛合金薄板的屈服强度和抗拉强度最高,分别为691.74 MPa和781.68 MPa,断后伸长率最低,为9.62%。当退火温度为660 ~ 860 ℃时,钛合金薄板的屈服强度和抗拉强度随着温度的升高先降低后升高,断后伸长率则先升高后降低。与冷轧态的相比,退火后钛合金薄板的耐腐蚀性提高,其中760 ℃退火后钛合金薄板的腐蚀电流密度和稳态电流密度最低,分别为2.55×10-8 A·cm-2和0.36 μA·cm-2
    Abstract: The effects of grain size, precipitate morphology and distribution, grain boundary type on the mechanical properties and corrosion resistance of the cold-rolled Ti-Ni-Nb-Ta titanium alloy sheets annealed in the temperature range of 660-860 ℃ are investigated. The results indicate that the grain deformation of the cold-rolled thin plate is severe, and that the precipitated phase (Ti2Ni) is distributed in long strip in the matrix. A static recrystallization process occurs in the plate in the course of annealing. When the annealing temperature is 660-760 ℃, the average grain size increases with the rise of temperature, and some of Ti2Ni phases dissolute. When the annealing temperature is 860 ℃, the Ti2Ni particles are completely dissolved in the matrix, and the β phase nucleates at the grain boundaries, preventing the further growth of α phase, therefore, the average grain size decreases. The yield and tensile strengths of the cold-rolled titanium alloy sheet are the highest, 691.74 MPa and 781.68 MPa, respectively, while the elongation is 9.62%, the lowest. With the increase of temperature from 660 ℃ to 860 ℃, the yield and tensile strengths decreases first and then increases, and the percentage elongation after fracture increases first and then decreases. Compared with the cold-rolled thin titanium alloy sheet, the sheet annealed has better corrosion resistance. The corrosion current density and stable current density of the titanium alloy sheet annealed at 760 ℃ are the lowest, 2.55×10-8 A·cm-2 and 0.36 μA·cm-2, respectively.
  • [1]

    DAUD W R W, ROSLI R E, MAJLAN E H, et al. PEM fuel cell system control: a review[J]. Renewable Energy, 2017, 113: 620-638.

    [2]

    ASRI N F, HUSAINI T, SULONG A B, et al. Coa-ting of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: a review[J]. International Journal of Hydrogen Energy, 2017, 42(14): 9135-9148.

    [3]

    WANG L, TAO Y K, ZHANG Z, et al. Molybdenum carbide coated 316L stainless steel for bipolar plates of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4940-4950.

    [4]

    WANG Y L, ZHANG S H, WANG P, et al. Syn-thesis and corrosion protection of Nb doped TiO2 nanopowders modified polyaniline coating on 316 stainless steel bipolar plates for proton-exchange membrane fuel cells[J]. Progress in Organic Coatings, 2019, 137: 105327.

    [5]

    WU J F, YUAN X Z, MARTIN J J, et al. A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies[J]. Journal of Power Sources, 2008, 184(1): 104-119.

    [6]

    ZHANG P C, HAO C M, HAN Y T, et al. Electrochemical behavior and surface conductivity of NbC modified Ti bipolar plate for proton exchange membrane fuel cell[J]. Surface and Coatings Technology, 2020, 397: 126064.

    [7]

    ZHAO J, LI X G. A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques[J]. Energy Conversion and Management, 2019, 199: 112022.

    [8]

    PENG L F, YI P Y, LAI X M. Design and manufacturing of stainless steel bipolar plates for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21127-21153.

    [9]

    YI P Y, ZHANG D, QIU D K, et al. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6813-6843.

    [10]

    WANG H, TURNER J A. Reviewing metallic PEMFC bipolar plates[J]. Fuel Cells, 2010, 10(4): 510-519.

    [11]

    FU A, GUO W M, LIU B, et al. A particle reinforced NbTaTiV refractory high entropy alloy based composite with attractive mechanical properties[J]. Journal of Alloys and Compounds, 2020, 815: 152466.

    [12]

    JIN J, HE Z, ZHAO X H. Formation of a protective TiN layer by liquid phase plasma electrolytic nitridation on Ti-6Al-4V bipolar plates for PEMFC[J]. International Journal of Hydrogen Energy, 2020, 45(22): 12489-12500.

    [13]

    SONG Y X, ZHANG C Z, LING C Y, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29832-29847.

    [14]

    SEDRIKS A J, GREEN J A S, NOVAK D L. Electrochemical behavior of Ti-Ni alloys in acidic chloride solutions[J]. Corrosion, 1972, 28(4): 137-142.

    [15]

    GLASS R S. Effect of intermetallic Ti2Ni on the electrochemistry of TiCODE-12 in hydrochloric acid[J]. Electrochimica Acta, 1983, 28(11): 1507-1513.

    [16]

    OZAN S, LIN J X, ZHANG Y W, et al. Cold rolling deformation and annealing behavior of a β-type Ti-34Nb-25Zr titanium alloy for biomedical applications[J]. Journal of Materials Research and Technology, 2020, 9(2): 2308-2318.

    [17]

    WANG X, PAN Y, YANG J H, et al. Corrosion behavior of Ti-0.3Mo-0.8Ni (TA10) alloy in proton exchange membrane fuel cell environment: Experimental and theoretical studies[J]. International Journal of Electrochemical Science, 2023, 18(9): 100239.

    [18]

    SEO B, PARK H K, PARK C S, et al. Effect of alloying elements on corrosion properties of high corrosion resistant titanium alloys in high concentrated sulfuric acid[J]. Materials Today Communications, 2023, 34: 105131.

    [19]

    SUN R L, XIA Z X, YANG C R, et al. Experimental measurement of proton conductivity and electronic conductivity of membrane electrode assembly for proton exchange membrane fuel cells[J]. Progress in Natural Science: Materials International, 2020, 30(6): 912-917.

    [20]

    AUKLAND N, BOUDINA A, EDDY D S, et al. All-oys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates[J]. Journal of Materials Research, 2004, 19(6): 1723-1729.

    [21]

    KIM H S, YOO S J, AHN J W, et al. Ultrafine gra-ined titanium sheets with high strength and high corrosion resistance[J]. Materials Science and Engineering: A, 2011, 528(29-30): 8479-8485.

    [22]

    KIM W J, YOO S J, JEONG H T, et al. Effect of the speed ratio on grain refinement and texture development in pure Ti during differential speed rolling[J]. Scripta Materialia, 2011, 64(1): 49-52.

    [23]

    KIM H S, KIM W J. Annealing effects on the corrosion resistance of ultrafine-grained pure titanium[J]. Corrosion Science, 2014, 89: 331-337.

    [24]

    HOSEINI M, SHAHRYARI A, OMANOVIC S, et al. Comparative effect of grain size and texture on the co-rrosion behaviour of commercially pure titanium processed by equal channel angular pressing[J]. Corrosion Science, 2009, 51(12): 3064-3067.

    [25]

    DULL D L, RAYMOND L. Thermal and mechanical effects on the corrosion behavior of Ti-6Al-4V alloy[J]. Journal of the Electrochemical Society, 1973, 120(12): 1632.

    [26]

    ZHU H F, WANG X P, MENG W, et al. Effect of annealing time on microstructure and properties of Ti-Nb-Ni sheets as bipolar plates substrates[J]. International Journal of Hydrogen Energy, 2024, 57: 1263-1272.

    [27]

    OTSUKA K, REN X. Physical metallurgy of Ti-Ni-based shape memory alloys[J]. Progress in Materials Science, 2005, 50(5): 511-678.

    [28]

    ZHU H F, WANG X P, MENG W, et al. Evolution of Ti2Ni precipitations during annealing and their effects on properties of Ti-Nb-Ni foil as PEMFC bipolar plates substrate[J]. International Journal of Hydrogen Energy, 2023, 48(39): 14822-14836.

    [29]

    WU G C, LI S Y, LI J H, et al. Texture evolution during multi-pass cold rolling and annealing of Ti-2Al-1.5Mn alloy[J]. Journal of Alloys and Compounds, 2024, 971: 172705.

    [30]

    TANG J, LUO H Y, QI Y M, et al. Effect of nano-scale martensite and β phase on the passive film formation and electrochemical behaviour of Ti-10V-2Fe-3Al alloy in 3.5% NaCl solution[J]. Electrochimica Acta, 2018, 283: 1300-1312.

计量
  • 文章访问数:  32
  • HTML全文浏览量:  2
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30

目录

    /

    返回文章
    返回