Effect of Deformation Temperature on Low∑CSL Grain Boundary Content of 06Cr23Ni13 Stainless Steel
-
摘要: 采用Gleeble-3500热模拟试验机研究了06Cr23Ni13不锈钢在应变速率为0.01 s-1条件下,不同变形温度的热变形行为,探究了变形温度对06Cr23Ni13不锈钢低重合位置点阵(CSL)晶界含量变化的影响。结果表明,06Cr23Ni13不锈钢再结晶程度随着变形温度的升高而增大,当变形温度为1 150 ℃时,显微组织再结晶程度最高,奥氏体晶粒为等轴晶。利用Channel 5对不同变形温度条件下06Cr23Ni13不锈钢特殊晶界统计发现,低∑CSL晶界含量随着动态再结晶程度的升高呈先增大后减小的趋势,在1 150 ℃达到最大值。06Cr23Ni13不锈钢低∑CSL晶界主要由∑3、∑9和∑27晶界构成。
-
关键词:
- 06Cr23Ni13不锈钢 /
- 热压缩 /
- 低∑CSL晶界 /
- EBSD
Abstract: The hot deformation behavior of the 06Cr23Ni13 stainless steel at different deformation temperatures and strain rates of 0.01 s-1 is studied by Gleeble-3500 instrument, and the effect of deformation temperature on grain boundary content of low coincidence lattice (CSL) is investigated. The results show that the recrystallization degree of the 06Cr23Ni13 stainless steel increases with the increase of deformation temperature. When the deformation temperature is 1 150 ℃, the recrystallization degree of microstructure is the highest, and the austenitic grain is equiaxed. According to the statistics of special grain boundaries of the 06Cr23Ni13 stainless steel under different deformation temperatureby Channel 5 software, the content of the low ∑CSL grain boundaries increases firstly and then decrease with the increase of the dynamic recrystallization degree during the hot deformation process, which reaches its maximum at 1 150 ℃. The low ∑CSL grain boundaries of the 06Cr23Ni13 stainless steel are mainly composed of ∑3, ∑9 and ∑27 grain boundaries.-
Key words:
- 06Cr23Ni13 stainless steel /
- hot deformation /
- low ∑CSL grain boundaries /
- EBSD
-
[1] 董晓强, 李钊. 304连续油管在油井条件下的失效分析[J]. 热加工工艺, 2015, 44(10):239-240. [2] LIN X D, PENG Q J, HAN E H, et al. Deformation and cracking behaviors of proton-irradiated 308L stainless steel weld metal strained in simulated PWR primary water[J]. 材料科学技术(英文版), 2022, 38(25):36-52. [3] 王伟聪, 杜华云, 侯利锋, 等. 新型奥氏体耐热不锈钢C-HRA-5的热变形行为[J]. 钢铁研究学报, 2022, 34(5):496-503. [4] WANG L, CHEN C, WANG Z Y, et al. Effect of hot deformation parameters on dynamic recrystallisation mechanisms of super austenitic stainless steel[J]. Materials Science and Technology, 2022, 38(2):78-89. [5] BRANDON D G. The structure of high-angle grain bo-undaries[J]. Acta Metallurgica, 1966, 14(11):1479-1484. [6] PENG W W, ZENG W D, WANG Q J, et al. Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map[J]. Materials Science and Engineering:A, 2013, 571:116-122. [7] HU C L, XIA S, LI H, et al. Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corrosion Science, 2011, 53(5):1880-1886. [8] CHONG P H, LIU Z, WANG X Y, et al. Pitting corrosion behaviour of large area laser surface treated 304L stainless-steel[J]. Thin Solid Films, 2004, 453-454:388-393. [9] 王方军, 刘璇, 刘应龙, 等. 固溶温度对冷轧态690合金组织及晶界分布特征的影响[J]. 金属热处理, 2020, 45(3):151-157. [10] 周向东, 高鑫, 浦海涌, 等. 晶界工程对面心立方金属材料性能的影响[J]. 世界有色金属, 2020(4):168-169. [11] 师瑀, 张莹莹, 刘峰, 等. 面心立方金属晶界工程技术的研究进展[J]. 热加工工艺, 2020, 49(16):32-36. [12] 杨兆, 陈兴润, 王珂, 等. 309L奥氏体不锈钢板热轧边裂缺陷成因分析和工艺改进[J]. 特殊钢, 2021, 42(4):56-59. [13] 孟重重, 杨小容, 张华煜, 等. 309SMOD奥氏体耐热不锈钢的高温氧化行为[J]. 金属热处理, 2021, 46(11):24-28. [14] 陈兴润, 潘吉祥, 蒋随强. 固溶处理对309S不锈钢组织和力学性能的影响[J]. 特种铸造及有色合金, 2016, 36(7):684-687. [15] LICHTENFELD J A, VAN TYNE C J, MATAYA M C. Effect of strain rate on stress-strain behavior of alloy 309 and 304L austenitic stainless steel[J]. Metallurgical and Materials Transactions A, 2006, 37(1):147-161. [16] SAKAGUCHI N, OHGUCHI Y, SHIBAYAMA T, et al. Surface cracking on ∑3, ∑9 CSL and random grain boundaries in helium implanted 316L austenitic stainless steel[J]. Journal of Nuclear Materials, 2013, 432(1-3):23-27. [17] 卓秀秀, 徐桂芳, 袁圆, 等. 0Cr17Mn17Mo3NiN奥氏体不锈钢的热变形行为及热加工图[J]. 机械工程学报, 2017, 53(22):74-80.
点击查看大图
计量
- 文章访问数: 618
- HTML全文浏览量: 50
- PDF下载量: 17
- 被引次数: 0