留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热压层合镁锂合金片材制备与组织性能研究

王威 浦丽莉 霍雨晗

王威, 浦丽莉, 霍雨晗. 热压层合镁锂合金片材制备与组织性能研究[J]. 材料开发与应用, 2024, 39(2): 9-16.
引用本文: 王威, 浦丽莉, 霍雨晗. 热压层合镁锂合金片材制备与组织性能研究[J]. 材料开发与应用, 2024, 39(2): 9-16.
WANG Wei, PU Lili, HUO Yuhan. Research on Preparation, Microstructures and Mechanical Properties of Hot-Pressed Laminated Mg-Li Alloy Sheets[J]. Development and Application of Materials, 2024, 39(2): 9-16.
Citation: WANG Wei, PU Lili, HUO Yuhan. Research on Preparation, Microstructures and Mechanical Properties of Hot-Pressed Laminated Mg-Li Alloy Sheets[J]. Development and Application of Materials, 2024, 39(2): 9-16.

热压层合镁锂合金片材制备与组织性能研究

基金项目: 

黑龙江工程学院大创项目(202211802109)

2023年黑龙江工程学院大创项目(镁锂合金真空熔炼与水冷模凝固工艺实践)。

黑龙江工程学院博士基金(2015BJ10)

黑龙江省自然科学基金(LH2022E02)

详细信息
    作者简介:

    王威,男,1978年生,讲师,主要从事轻合金设计、制备与开发。E-mail:wwacme@126.com

  • 中图分类号: TG146.2

Research on Preparation, Microstructures and Mechanical Properties of Hot-Pressed Laminated Mg-Li Alloy Sheets

  • 摘要: 采用自行设计制备的LAY821合金,通过挤压和轧制工艺获得热压层合增材制造用LAY821合金片材,并对挤压和轧制变形方式下合金的显微组织和力学性能进行研究,为拓展Mg-Li合金在增材制造领域的应用,提供一定的理论与技术支持。分别用金相显微镜、扫描电镜观察合金的微观形貌,使用能谱仪检测相的成分,X射线衍射仪(XRD)分析合金的相组成,通过拉伸试验测试合金的力学性能。结果表明,LAY821合金主要由α-Mg、β-Li相与分布于晶界和α-Mg相中的Al2Y颗粒构成。经过挤压、轧制和中间退火处理后,合金形成均匀的双相等轴晶结构,平均粒径由11.6 μm减小至7.0 μm。Al2Y颗粒呈弥散分布,平均粒径由2.2 μm减小至1.0 μm,XRD检测结果未发现任何新相。合金的极限抗拉强度最高达到290.26 MPa,硬度提高到54.74HV,伸长率达30 %以上。力学性能的改善得益于细化的等轴晶结构和Al2Y颗粒的弥散强化作用。LAY821合金片材设计用于热压层合增材制造,制备过程中组织结构可控,其力学性能未产生明显的各向异性。

     

  • [1] CAIN T W, LABUKAS J P. The development of β phase Mg-Li alloys for ultralight corrosion resistant applications[J]. NPJ Materials Degradation, 2020, 4:17.
    [2] 彭翔, 刘文才, 吴国华. 镁锂合金的合金化及其应用[J]. 中国有色金属学报, 2021, 31(11):3024-3043.
    [3] XIN T Z, ZHAO Y H, MAHJOUB R, et al. Ultr-ahigh specific strength in a magnesium alloy strengthened by spinodal decomposition[J]. Science Advances, 2021, 7(23):eabf3039.
    [4] JI H, WU G H, LIU W C, et al. Origin of the age-hardening and age-softening response in Mg-Li-Zn based alloys[J]. Acta Materialia, 2022, 226:117673.
    [5] TANG S, XIN T Z, XU W Q, et al. Precipitation strengthening in an ultralight magnesium alloy[J]. Nature Communications, 2019, 10(1):1003.
    [6] DOBKOWSKA A, ŻRODOWSKI Ƚ, CHLEWICKA M, et al. A comparison of the microstructure-dependent corrosion of dual-structured Mg-Li alloys fabricated by powder consolidation methods:laser powder bed fusion vs pulse plasma sintering[J]. Journal of Magnesium and Alloys, 2022, 10(12):3553-3564.
    [7] WANG J H, WU R Z, FENG J, et al. Influence of rolling strain on electromagnetic shielding property and mechanical properties of dual-phase Mg-9Li alloy[J]. Materials Characterization, 2019, 157:109924.
    [8] GASIOR W, MOSER Z, ZAKULSKI W, et al. Thermodynamic studies and the phase diagram of the Li-Mg system[J]. Metallurgical and Materials Transactions A, 1996, 27(9):2419-2428.
    [9] ZHAO J, ZHANG J, LIU W C, et al. Effect of Y content on microstructure and mechanical properties of as-cast Mg-8Li-3Al-2Zn alloy with duplex structure[J]. Materials Science and Engineering:A, 2016, 650:240-247.
    [10] BHAGAT SINGH P, SABAT R K, KUMARAN S, et al. Effect of aluminum addition on the evolution of microstructure, crystallographic texture and mechanical properties of single phase hexagonal close packed Mg-Li alloys[J]. Journal of Materials Engineering and Performance, 2018, 27(2):864-874.
    [11] WANG W, WU R Z. Microstructure and Properties of Mg-8Li-3Al-1Y Alloy[J]. Journal of Wuhan University of Technology (Materials Science), 2009, S1:41-43.
    [12] PHASHA M J, NGOEPE P E, CHAUKE H R, et al. Link between structural and mechanical stability of fcc-and bcc-based ordered Mg-Li alloys[J]. Intermetallics, 2010, 18(11):2083-2089.
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  47
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-19
  • 网络出版日期:  2024-05-09

目录

    /

    返回文章
    返回