[1] |
XIONG W, HAO L, PEIJS T, et al. Simultaneous strength and ductility enhancements of high thermal conductive Ag7.5Cu alloy by selective laser melting[J]. Scientific Reports, 2022, 12: 4250.
|
[2] |
ALI A, BAHETI V, MILITKY J. Energy harvesting performance of silver electroplated fabrics[J]. Materials Chemistry and Physics, 2019, 231: 33-40.
|
[3] |
BERNASCONI R, HART J L, LANG A C, et al. Structural properties of electrodeposited Cu-Ag alloys[J]. Electrochimica Acta, 2017, 251: 475-481.
|
[4] |
KATO K, OMOTO H, TOMIOKA T, et al. Visible and near infrared light absorbance of Ag thin films deposited on ZnO under layers by magnetron sputtering[J]. Solar Energy Materials and Solar Cells, 2011, 95(8): 2352-2356.
|
[5] |
SILVER S, PHUNG L T, SILVER G. Silver as bioc-ides in burn and wound dressings and bacterial resistance to silver compounds[J]. Journal of Industrial Microbiology and Biotechnology, 2006, 33(7): 627-634.
|
[6] |
FANTINO E, CHIAPPONE A, ROPPOLO I, et al. 3D printing: 3D printing of conductive complex structures with in situ generation of silver nanoparticles (adv. mater. 19/2016)[J]. Advanced Materials, 2016, 28(19): 3711.
|
[7] |
BRADLEY D. Every silver-lined solar cell[J]. Materials Today, 2009, 12(11): 10.
|
[8] |
YU Q Q, MENG K N, GUO J L. Research on innovative application of silver material in modern jewelry design[J]. MATEC Web of Conferences, 2018, 176: 02013.
|
[9] |
CIACOTICH N, DIN R U, SLOTH J J, et al. An electroplated copper-silver alloy as antibacterial coating on stainless steel[J]. Surface and Coatings Technology, 2018, 345: 96-104.
|
[10] |
LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper[J]. Science, 2004, 304(5669): 422-426.
|
[11] |
BACHMAIER A, PFAFF M, STOLPE M, et al. Phase separation of a supersaturated nanocrystalline Cu-Co alloy and its influence on thermal stability[J]. Acta Materialia, 2015, 96: 269-283.
|
[12] |
TUTHILL A H. Guidelines for the use of copper alloys in seawater[J]. Materials Performance, 1987, 26: 12-22.
|
[13] |
TYLECOTE R F. A history of metallurgy[M]. 2nd ed. London: Institute of Materials, 1992.
|
[14] |
WALSH F C, LOW C T J. A review of developments in the electrodeposition of tin-copper alloys[J]. Surface and Coatings Technology, 2016, 304: 246-262.
|
[15] |
SINGER F, DEISENROTH D C, HYMAS D M, et al. Additively manufactured copper components and composite structures for thermal management applications[C]//201716th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm).
|
[16] |
BLAKEY-MILNER B, GRADL P, SNEDDEN G, et al. Metal additive manufacturing in aerospace: a review[J]. Materials & Design, 2021, 209: 110008.
|
[17] |
邢少华, 杨光付, 隋永强, 等. 90/10铜镍合金海水管路直流杂散电流腐蚀及控制研究[J]. 材料开发与应用, 2022, 37(4): 41-48.
|
[18] |
WEI C, GU H, LI Q, et al. Understanding of process and material behaviours in additive manufacturing of Invar36/Cu10Sn multiple material components via laser-based powder bed fusion[J]. Additive Manufacturing, 2021, 37: 101683.
|
[19] |
WANG D, LIU L Q, DENG G W, et al. Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion[J]. Virtual and Physical Prototyping, 2022, 17(2): 329-365.
|
[20] |
WEI C, ZHANG Z Z, CHENG D X, et al. An overview of laser-based multiple metallic material additive manufacturing: from macro- to micro-scales[J]. International Journal of Extreme Manufacturing, 2021, 3(1): 012003.
|
[21] |
韩茂盛, 罗皓, 刘乐乐, 等. 铜合金截止阀密封失效原因分析[J]. 材料开发与应用, 2021, 36(2): 49-54.
|
[22] |
GU D D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: materials, processes and mechanisms[J]. International Materials Reviews, 2012, 57(3): 133-164.
|
[23] |
LI Z, LI H, YIN J E, et al. A review of spatter in laser powder bed fusion additive manufacturing: in situ detection, generation, effects, and countermeasures[J]. Micromachines, 2022, 13(8): 1366.
|
[24] |
GU D, SHI X, POPRAWE R, et al. Materialstruc-ture-performance integrated laser-metal additive manufacturing [J]. Science, 2021, 372(6545): 1487.
|
[25] |
KUMAR CHAUHAN P, KHAN S. Microstructural examination of aluminium-copper functionally graded material developed by powder metallurgy route[J]. Materials Today: Proceedings, 2020, 25: 833-837.
|
[26] |
SAFARI M, YAGHOOTI H, JOUDAKI J. Laser we-lding of titanium and stainless steel sheets using Ag-Cu interlayers: microstructure and mechanical characterization[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(9-10): 3063-3073.
|
[27] |
Soderhjelm C. Multi-Material Metal Casting: Metallurgically Bonding Aluminum to Ferrous Inserts [J]. 2017.
|
[28] |
MOUSAVI Z, POURABDOLI M. Physical and chemical properties of Ag–Cu composite electrical contacts prepared by cold-press and sintering of silver-coated copper powder[J]. Materials Chemistry and Physics, 2022, 290: 126608.
|
[29] |
SCUDINO S, UNTERDÖRFER C, PRASHANTH K G, et al. Additive manufacturing of Cu-10Sn bronze[J]. Materials Letters, 2015, 156: 202-204.
|
[30] |
顾瑞楠, WONG Kam Sing, 严明. 金、银、铜等典型高反射率材料的激光增材制造[J]. 中国科学: 物理学力学天文学, 2020, 50(3): 44-57.
|
[31] |
朱勇强, 杨永强, 王迪, 等. 纯铜/铜合金高反射材料粉末床激光熔融技术进展[J]. 材料工程, 2022, 50(6): 1-11.
|
[32] |
顾冬冬, 戴冬华, 夏木建, 等. 金属构件选区激光熔化增材制造控形与控性的跨尺度物理学机制[J]. 南京航空航天大学学报, 2017, 49(5): 645-652.
|
[33] |
KLOTZ U E, TIBERTO D, HELD F. Optimization of 18-karat yellow gold alloys for the additive manufacturing of jewelry and watch parts[J]. Gold Bulletin, 2017, 50(2): 111-121.
|
[34] |
XIONG W, HAO L, LI Y, et al. Effect of selective laser melting parameters on morphology, microstructure, densification and mechanical properties of supersaturated silver alloy[J]. Materials & Design, 2019, 170: 107697.
|
[35] |
WANG J B, ZHOU X L, LI J H, et al. Microstructures and properties of SLM-manufactured Cu-15Ni-8Sn alloy[J]. Additive Manufacturing, 2020, 31: 100921.
|
[36] |
LIU L Q, WANG D, DENG G W, et al. Interfacial characteristics and formation mechanisms of copper-steel multimaterial structures fabricated via laser powder bed fusion using different building strategies[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(3): 100045.
|
[37] |
ZHANG M K, YANG Y Q, WANG D, et al. Microstructure and mechanical properties of CuSn/18Ni300 bimetallic porous structures manufactured by selective laser melting[J]. Materials & Design, 2019, 165: 107583.
|
[38] |
WEI C, LIU L C, CAO H T, et al. Cu10Sn to Ti6Al4V bonding mechanisms in laser-based powder bed fusion multiple material additive manufacturing with different build strategies[J]. Additive Manufacturing, 2022, 51: 102588.
|
[39] |
SING S L, LAM L P, ZHANG D Q, et al. Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy[J]. Materials Characterization, 2015, 107: 220-227.
|
[40] |
CHEN Q Y, JING Y B, YIN J E, et al. High reflectivity and thermal conductivity Ag–Cu multi-material structures fabricated via laser powder bed fusion: formation mechanisms, interfacial characteristics, and molten pool behavior[J]. Micromachines, 2023, 14(2): 362.
|
[41] |
WEI C, LIU L C, GU Y C, et al. Multi-material additive-manufacturing of tungsten - copper alloy bimetallic structure with a stainless-steel interlayer and associated bonding mechanisms[J]. Additive Manufacturing, 2022, 50: 102574.
|
[42] |
WU X P, ZHANG D Y, YI D H, et al. Interfacial characterization and reaction mechanism of Ti/Al multi-material structure during laser powder bed fusion process[J]. Materials Characterization, 2022, 192: 112195.
|
[43] |
SINGH S P, AGGARWAL A, UPADHYAY R K, et al. Processing of IN718-SS316L bimetallic-structure using laser powder bed fusion technique[J]. Materials and Manufacturing Processes, 2021, 36(9): 1028-1039.
|
[44] |
ATTAR H, BÖNISCH M, CALIN M, et al. Selective laser melting of in situ titanium-titanium boride composites: processing, microstructure and mechanical properties[J]. Acta Materialia, 2014, 76: 13-22.
|
[45] |
CAIAZZO F, ALFIERI V, CASALINO G. On the relevance of volumetric energy density in the investigation of inconel 718 laser powder bed fusion[J]. Materials, 2020, 13(3): 538.
|
[46] |
SHI Q M, ZHONG G Y, SUN Y, et al. Effects of laser melting+remelting on interfacial macrosegregation and resulting microstructure and microhardness of laser additive manufactured H13/IN625 bimetals[J]. Journal of Manufacturing Processes, 2021, 71: 345-355.
|
[47] |
TAN C L, ZHOU K S, MA W Y, et al. Interfacial characteristic and mechanical performance of maraging steel-copper functional bimetal produced by selective laser melting based hybrid manufacture[J]. Materials & Design, 2018, 155: 77-85.
|
[48] |
SUBRAMANIAN P R, PEREPEZKO J H. The Ag-Cu(silver-copper) system[J]. Journal of Phase Equilibria, 1993, 14(1): 62-75.
|
[49] |
ZWEBEN C. 4.16 metal matrix composite thermal management materials[J].Comprehensive Composite Materials II, 2018, 4:386-396.
|
[50] |
MERCELIS P, KRUTH J P. Residual stresses in selective laser sintering and selective laser melting [J]. Rapid prototyping journal, 2006, 12(5): 254-65.
|
[51] |
REN Z S, GAO L, CLARK S J, et al. Machine learning-aided real-time detection of keyhole pore generation in laser powder bed fusion[J]. Science, 2023, 379(6627): 89-94.
|
[52] |
TANG M, PISTORIUS P C, BEUTH J L. Prediction of lack-of-fusion porosity for powder bed fusion[J]. Additive Manufacturing, 2017, 14: 39-48.
|
[53] |
YIN J, ZHANG W Q, KE L D, et al. Vaporization of alloying elements and explosion behavior during laser powder bed fusion of Cu-10Zn alloy[J]. International Journal of Machine Tools and Manufacture, 2021, 161: 103686.
|
[54] |
QI T, ZHU H H, ZHANG H, et al. Selective laser melting of Al7050 powder: melting mode transition and comparison of the characteristics between the keyhole and conduction mode[J]. Materials & Design, 2017, 135: 257-266.
|
[55] |
殷杰, 郝亮, 杨亮亮, 等. 激光选区熔化增材制造中金属蒸气与飞溅相互作用研究[J]. 中国激光, 2022, 49(14): 108-119.
|
[56] |
BAI Y C, ZHANG J Y, ZHAO C L, et al. Dual interfacial characterization and property in multi-material selective laser melting of 316L stainless steel and C52400 copper alloy[J]. Materials Characterization, 2020, 167: 110489.
|
[57] |
QIN H, DONG Q S, FALLAH V, et al. Rapid solidification and non-equilibrium phase constitution in laser powder bed fusion (LPBF) of AlSi10Mg alloy: analysis of nano-precipitates, eutectic phases, and hardness evolution[J]. Metallurgical and Materials Transactions A, 2020, 51(1): 448-466.
|
[58] |
ARAFUNE K, HIRATA A. Thermal and solutal Marangoni convection in In-Ga-Sb system[J]. Journal of Crystal Growth, 1999, 197(4): 811-817.
|
[59] |
TAN C L, ZHOU K S, MA W Y, et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel[J]. Materials & Design, 2017, 134: 23-34.
|
[60] |
CALLISTER W D. Materials science and engineering: an introduction[M]. 7th ed. New York: John Wiley & Sons, 2007.
|
[61] |
YAO C Z, WANG Z C, TAY S L, et al. Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy[J]. Journal of Alloys and Compounds, 2014, 602: 101-107.
|
[62] |
ZENG C Y, ZHANG B, HEMMASIAN ETTEFAGH A, et al. Mechanical, thermal, and corrosion properties of Cu-10Sn alloy prepared by laser-powder-bedfusion additive manufacturing[J]. Additive Manufacturing, 2020, 35: 101411.
|
[63] |
ZHOU L B, YUAN T C, LI R D, et al. Selective laser melting of pure tantalum: Densification, microstructure and mechanical behaviors[J]. Materials Science and Engineering: A, 2017, 707: 443-451.
|
[64] |
CHEN J, YANG Y Q, WANG D, et al. Effect of manufacturing steps on the interfacial defects of laser powder bed fusion 316L/CuSn10[J]. Materials Letters, 2021, 292: 129377.
|
[65] |
LIU Y J, LIU Z, JIANG Y, et al. Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg[J]. Journal of Alloys and Compounds, 2018, 735: 1414-1421.
|
[66] |
ZHU X, ZHU Z G, LIU T T, et al. Crack-free and high-strength AA2024 alloy obtained by additive manufacturing with controlled columnar-equiaxed-transition[J]. Journal of Materials Science & Technology, 2023, 156: 183-196.
|
[67] |
NARAYANA SAMY V P, SCHÄFLE M, BRASCHE F, et al. Understanding the mechanism of columnar-to-equiaxed transition and grain refinement in additively manufactured steel during laser powder bed fusion[J]. Additive Manufacturing, 2023, 73: 103702.
|
[68] |
ZHANG D Y, QIU D, GIBSON M A, et al. Additive manufacturing of ultrafine-grained high-strength titanium alloys[J]. Nature, 2019, 576(7785): 91-95.
|
[69] |
VIKRAM R J, KOLLO L, PRASHANTH K G, et al. Investigating the structure, microstructure, and texture in selective laser-melted sterling silver 925[J]. Metallurgical and Materials Transactions A, 2021, 52(12): 5329-5341.
|
[70] |
ATTAR H, PRASHANTH K G, CHAUBEY A K, et al. Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes[J]. Materials Letters, 2015, 142: 38-41.
|
[71] |
ATTAR H, EHTEMAM-HAGHIGHI S, KENT D, et al. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting[J]. Materials Science and Engineering: A, 2017, 688: 20-26.
|
[72] |
ZAFARI A, LUI E W, XIA K N. Deformationfree geometric recrystallisation in a metastable β-Ti alloy produced by selective laser melting[J]. Materials Research Letters, 2020, 8(3): 117-122.
|