Correlation Analysis on Crack Arrest Temperature of Low Alloy High Strength Hull Steels
-
摘要: 为研究不同温度场条件下所测止裂温度的相关性,针对4种批号船用低合金高强钢,分别开展等温型双重拉伸试验和梯度温度型(以下简称“梯温型”)双重拉伸试验,测得了等温型止裂温度和梯温型止裂温度。结果表明,在同一主拉伸应力水平下,梯温型止裂温度值均高于等温型止裂温度值,两者差值与主拉伸应力近似呈线性增长关系、与板厚近似呈二次函数关系。从能量角度对等温型和梯温型双重拉伸试验过程进行分析,确定了影响等温型止裂温度和梯温型止裂温度相关性的主要因素为主拉伸应力、无塑性转变温度和板厚,同时初步给出了相关性表达式。4种批号钢板的试验结果表明,所建立的表达式能够较好地表征板厚不大于80 mm的船用低合金高强钢的等温型止裂温度和梯温型止裂温度的相关性。Abstract: Isothermal and temperature-gradient double tension tests have been conducted on 4 lots of low alloy high strength hull steels to study the correlation between crack arrest temperatures obtained in different temperature fields. Test results indicate that under the same main tensile stress, the value of temperature-gradient crack arrest temperature is higher than that of isothermal crack arrest temperature. The difference of these two temperatures increases linearly with the increase of main tensile stress and shows an approximately quadratic function relationship with the plate thickness. Test procedures of isothermal and temperature-gradient double tension tests have been analyzed from the perspective of energy balance and the main influencing factors including main tensile stress, nil-ductility transition temperature and plate thickness, on which basis, a correlation expression is proposed and its validity is identified by test data of low alloy high strength hull steels with thickness no more than 80 mm.
-
[1] KAWABATA T, INOUE T, TAGAWA T, et al. Historical review of research on brittle crack propagation arresting technology for large welded steel structures developed in Japan with the application of Kca parameters[J]. Marine Structures, 2020, 71:102737. [2] SHIBANUMA K, YANAGIMOTO F, NAMEGAWA T, et al. Brittle crack propagation/arrest behavior in steel plate-Part Ⅰ:Model formulation[J]. Engineering Fracture Mechanics, 2016, 162:324-340. [3] YOSHIYA Y, HIROSHI Y, SHUJI A, et al. Development of guidelines on brittle crack arrest design-brittle crack arrest design for large container ships-1[C]. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, Beijing, China, 2010:71-79. [4] UR S33-2013. Requirements for use of extremely thick steel plates[S]. [5] ISO 20064-2019. Metallic materials-steel-method of test for the determination of brittle crack arrest toughness, Kca[S]. [6] WES 2815:2014. Test method for brittle crack arrest toughness, Kca[S]. [7] GB/T 6803-2008. 铁素体钢的无塑性转变温度落锤试验方法[S]. [8] TOMOYA K, KAZUYUKI M, TSUBASA A, et al. Development of brittle crack arrest toughness Kca test method-brittle crack arrest design for large container ships-2[C]. Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference, Beijing, China, 2010:80-87. [9] SHIBANUMA K, YANAGIMOTO F, NAMEGAWA T, et al. Brittle crack propagation/arrest behavior in steel plate-Part Ⅱ:Experiments and model validation[J]. Engineering Fracture Mechanics, 2016, 162:341-360. [10] ANDERSON T L. Fracture mechanics:fundamentals and applications[M]. Boca Raton:CRC Press, 2005:32-33. [11] 王烽, 廉晓洁. 冲击韧脆转变曲线数学模型的选择[J]. 理化检验(物理分册), 2009, 45(10):617-620. [12] 褚峰, 张靖, 陆春洁, 等. 船用低温钢的冲击断裂行为及韧脆转变温度曲线分析[J]. 中国测试, 2018, 44(9):136-140. [13] 邓彩艳, 宋蒙蒙, 龚宝明, 等. 试样厚度对韧脆转变温度区间的影响[J]. 焊接学报, 2018, 39(5):1-4. [14] GALLO C, ÁLVAREZ J A, GUTIÉRREZ-SOLANA F, et al. Predicting crack arrest behaviour of structural steels using small-scale material characterisation tests[M]//From Charpy To Present Impact Testing. Amsterdam:Elsevier, 2002:271-278. [15] WIESNER C S. Predicting structural crack arrest behaviour using small-scale material characterisation tests[J]. International Journal of Pressure Vessels and Piping, 1996, 69(2):185-196. [16] British Steel plc. Literature review of the fracture properties of grade a ship plate[R]. Norwich:Health and Safety Executive, 1997.
点击查看大图
计量
- 文章访问数: 330
- HTML全文浏览量: 47
- PDF下载量: 50
- 被引次数: 0