留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂硫电池正极材料的研究进展

王唯嘉 李丰源 张紫萱 杨东澍 黄英

王唯嘉, 李丰源, 张紫萱, 杨东澍, 黄英. 锂硫电池正极材料的研究进展[J]. 材料开发与应用, 2023, 38(3): 96-104.
引用本文: 王唯嘉, 李丰源, 张紫萱, 杨东澍, 黄英. 锂硫电池正极材料的研究进展[J]. 材料开发与应用, 2023, 38(3): 96-104.
WANG Weijia, LI Fengyuan, ZHANG Zixuan, YANG Dongshu, HUANG Ying. Research Progress in Cathode Material for Lithium-Sulfur Batteries[J]. Development and Application of Materials, 2023, 38(3): 96-104.
Citation: WANG Weijia, LI Fengyuan, ZHANG Zixuan, YANG Dongshu, HUANG Ying. Research Progress in Cathode Material for Lithium-Sulfur Batteries[J]. Development and Application of Materials, 2023, 38(3): 96-104.

锂硫电池正极材料的研究进展

基金项目: 

2021年西北工业大学"大学生创新创业训练计划"

详细信息
    作者简介:

    王唯嘉,男,2002年生,主要从事锂硫电池材料及复合材料的研究。

    通讯作者:

    黄英,女,教授,博导,主要从事功能材料的研究。E-mail:yingh@nwpu.edu.cn

  • 中图分类号: TM911

Research Progress in Cathode Material for Lithium-Sulfur Batteries

  • 摘要: 能源领域未来发展趋势着重于绿色清洁能源,锂硫电池以其高比能量以及成本低廉等优点,成为电池研究中的新热点。然而,目前锂硫电池仍存在较多问题阻碍其商业化,如正极材料硫导电性能差、正极产物多硫化物的穿梭效应、在充放电过程中,电池内部电极表现出体积膨胀等。本研究综述了近年来锂硫电池正极材料的研究进展,主要讨论了金属有机骨架化合物、碳材料以及导电聚合物在锂硫电池正极材料中的应用,并对锂硫电池正极材料的发展进行了展望。

     

  • [1] BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
    [2] XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
    [3] ELAZARI R, SALITRA G, TALYOSEF Y, et al. M-orphological and structural studies of composite sulfur electrodes upon cycling by HRTEM, AFM and Raman spectroscopy[J]. Journal of the Electrochemical Society, 2010, 157(10): A1131.
    [4] WANG L, HE X M, LI J J, et al. Analysis of the sy-nthesis process of sulphur-poly(acrylonitrile)-based cathode materials for lithium batteries[J]. Journal of Materials Chemistry, 2012, 22(41): 22077-22081.
    [5] 吕羚源. 导电聚合物包覆S-C正极材料的制备及电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.
    [6] 杨金宝, 白瑞钦, 马勇, 等. 含磺酸基染料掺杂聚吡咯的研究进展[J]. 胶体与聚合物, 2020, 38(3): 130-134.
    [7] 刘晔. 聚吡咯及其杂化材料在锂硫电池正极中的应用[D]. 太原: 太原理工大学,2019.
    [8] 周蜀东. 锂硫电池正极材料改性研究[D]. 杭州: 浙江大学,2019.
    [9] 刘晔, 宋茜, 李璇, 等. 聚吡咯/氧化钒@硫正极材料制备及其在锂硫电池中的应用[J]. 人工晶体学报, 2019, 48(11): 2069-2074.
    [10] 李宇洁, 周小中. 硫/聚吡咯正极材料的制备及性能研究[J]. 陇东学院学报, 2019, 30(2): 20-26.
    [11] WU G, MORE K L, JOHNSTON C M, et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028): 443-447.
    [12] 马萍, 张宝宏, 巩桂英, 等. 聚苯胺/硫复合材料作锂二次电池正极的研究[J]. 功能材料与器件学报, 2007, 13(5): 437-442.
    [13] ZHOU W D, YU Y C, CHEN H, et al. Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2013, 135(44): 16736-16743.
    [14] LI X G, RAO M M, LI W S. Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium-sulfur battery[J]. Journal of Solid State Electrochemistry, 2016, 20(1): 153-161.
    [15] 张婉容, 万凯, 朱超, 等. 导电聚合物复合材料作锂离子电池正极材料研究进展[J]. 胶体与聚合物, 2017, 35(1): 41-44.
    [16] SU Z S, WANG L D, LI Y T, et al. Ultraviolet-ozone-treated PEDOT: PSS as anode buffer layer for organic solar cells[J]. Nanoscale Research Letters, 2012, 7(1): 465.
    [17] WU F,CHEN J Z,CHEN R J,et al. Sulfur/Polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries[J]. Journal of Physical Chemistry C, 2011, 115(13):6057-6063.
    [18] 赵桂香. 多孔碳的制备改性及其在锂硫电池中的应用[D]. 兰州: 兰州理工大学, 2021.
    [19] 陈一帆. 锂硫电池正极材料的制备及性能研究[D]. 北京: 北京化工大学, 2020.
    [20] 沙畅畅, 毛杨杨, 曹永安, 等. 用于锂硫电池正极的生物质碳材料制备与应用[J]. 石油化工高等学校学报, 2020, 33(3): 1-7.
    [21] JI X L, LEE K T, NAZAR L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 500-506.
    [22] 陈锋. 石墨烯基碳材料改性隔膜的制备及其在锂硫电池中的应用[D]. 太原: 太原理工大学, 2021.
    [23] HAN S C, SONG M S, LEE H, et al. Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries[J]. Journal of the Electrochemical Society, 2003, 150(7): A889.
    [24] YUAN Z, PENG H J, HUANG J Q, et al. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(39): 6105-6112.
    [25] 马俊胜. 石墨烯基锂硫电池的正极设计与性能研究[D]. 北京: 北京科技大学, 2022.
    [26] WANG Z Y, DONG Y F, LI H J, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nature Communications, 2014, 5(1): 1-8.
    [27] ZHANG Y Y, GAO Z, SONG N N, et al. Graphene and its derivatives in lithium-sulfur batteries[J]. Materials Today Energy, 2018, 9: 319-335.
    [28] WANG J Z, LU L, CHOUCAIR M, et al. Sulfur-graphene composite for rechargeable lithium batteries[J]. Journal of Power Sources, 2011, 196(16): 7030-7034.
    [29] WANG H L, YANG Y, LIANG Y Y, et al. Graphe-newrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011, 11(7): 2644-2647.
    [30] ZHAO S R, LI C M, WANG W K, et al. A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2013, 1(10): 3334-3339.
    [31] LIU S H, LI J, YAN X, et al. Superhierarchical cobalt-embedded nitrogen-doped porous carbon nanosheets as two-in-one hosts for high-performance lithium-sulfur batteries[J]. Advanced Materials, 2018, 30(12): 1706895.
    [32] CHENG Z B, XIAO Z B, PAN H, et al. Lithium sulfur batteries: elastic sandwich-type rGO-VS2/S composites with high tap density: structural and chemical cooperativity enabling lithium-sulfur batteries with high energy density (adv. energy mater. 10/2018)[J]. Advanced Energy Materials, 2018, 8(10): 1870046.
    [33] KONG L, LI B Q, PENG H J, et al. Porphyrin-derived graphene-based nanosheets enabling strong polysulfide chemisorption and rapid kinetics in lithium-sulfur batteries[J]. Advanced Energy Materials, 2018, 8(20): 1800849.
    [34] SONG J X, XU T, GORDIN M L, et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(9): 1243-1250.
    [35] 杨晨曦. 金属有机骨架化合物历史及研究进展[J]. 材料化学前沿, 2020(1): 1-4.
    [36] ZHENG Y, ZHENG S S, XUE H G, et al. Metal-organic frameworks for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(8): 3469-3491.
    [37] 汪萍. MOFs在锂硫电池正极中的应用[J]. 广州化工, 2021, 49(23): 15-16.
    [38] 刘月娇. MOFs衍生物作为锂硫电池限硫载体的设计制备及其电化学性能研究[D]. 南京: 南京邮电大学, 2018.
    [39] FANG X, PENG H S. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2015, 11(13): 1488-1511.
    [40] LI Z Q, YIN L W. Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance[J]. ACS Applied Materials & Interfaces, 2015, 7(7): 4029-4038.
    [41] MAO Y Y, LI G R, GUO Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8(1): 1-8.
    [42] CAI D, LU M J, LI L, et al. A highly conductive MOF of graphene analogue Ni(3) (HITP)(2) as a sulfur host for high-performance lithium-sulfur batteries[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(44): e1902605.
    [43] 苏卫, 唐梓桓, 郑洋, 等. MOFs及其衍生物在锂硫电池正极中的应用[J]. 辽宁石油化工大学学报, 2020, 40(4): 59-69.
    [44] YANG X F, YAN N, ZHOU W, et al. Sulfur embedded in one-dimensional French fries-like hierarchical porous carbon derived from a metal-organic framework for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(29): 15314-15323.
    [45] LIANG C D, DUDNEY N J, HOWE J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730.
    [46] XU J, ZHANG W X, CHEN Y, et al. MOF-derived porous N-Co3O4@N-C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018, 6(6): 2797-2807.
    [47] LI W L, QIAN J, ZHAO T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science, 2019, 6(16): 1802362.
  • 加载中
计量
  • 文章访问数:  228
  • HTML全文浏览量:  49
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 网络出版日期:  2023-07-10

目录

    /

    返回文章
    返回