留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛基复合材料制备方法及性能研究进展

谷树德

谷树德. 钛基复合材料制备方法及性能研究进展[J]. 材料开发与应用, 2023, 38(1): 85-97.
引用本文: 谷树德. 钛基复合材料制备方法及性能研究进展[J]. 材料开发与应用, 2023, 38(1): 85-97.
GU Shude. Research Progress in Preparation Methods and Properties of Titanium Matrix Composites[J]. Development and Application of Materials, 2023, 38(1): 85-97.
Citation: GU Shude. Research Progress in Preparation Methods and Properties of Titanium Matrix Composites[J]. Development and Application of Materials, 2023, 38(1): 85-97.

钛基复合材料制备方法及性能研究进展

详细信息
    作者简介:

    谷树德,男,2001年生,主要从事金属材料工程研发。E-mail:2016971543@qq.com

  • 中图分类号: TB33

Research Progress in Preparation Methods and Properties of Titanium Matrix Composites

  • 摘要: 由于具有低密度和优异的室温、高温性能,钛基复合材料在航空航天、汽车等领域已被广泛应用。本研究综述了非连续型钛基复合材料常用制备方法、热加工工艺以及主要性能,并总结了目前钛基复合材料制备存在的主要问题和解决方法,最后展望了钛基复合材料的研究和应用发展方向。

     

  • [1] SHAFIEI-ZARGHANI A, KASHANI-BOZORG S F,GERLICH A P. Strengthening analyses and mechanical assessment of Ti/Al2O3 nano-composites produced by friction stir processing[J]. Materials Science and Engineering:A, 2015, 631:75-85.
    [2] POLETTI C, BALOG M, SCHUBERT T, et al. Production of titanium matrix composites reinforced with SiC particles[J]. Composites Science and Technology, 2008, 68(9):2171-2177.
    [3] YAN Q, CHEN B, LI J S. Super-high-strength graphene/titanium composites fabricated by selective laser melting[J]. Carbon, 2021, 174:451-462.
    [4] LIU J Q, HUN, LIU X Y, etal. Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering[J]. Nanoscale ResLett, 2019, 14(1):114.
    [5] CAO Z, WANG X D, LI J L, et al. Reinforcement with graphene nanoflakes in titanium matrix compos-ites[J]. Journal of Alloys and Compounds, 2017, 696:498-502.
    [6] 刘经奇.纳米碳增强钛基复合材料的制备与性能研究[D].重庆:重庆大学,2019.
    [7] 雷力明,黄光法,王方秋,等.基体组织对TiC/Ti-6Al-4V复合材料断裂韧性的影响[J].金属热处理, 2014, 439(9):100-103.
    [8] GENG K, LU W J, YANG Z F, et al. In situ preparation of titanium matrix composites reinforced by TiB and Nd2O3[J]. Materials Letters, 2003, 57(24-25):4054-4057.
    [9] 孙曙宇,吕维洁.增强体含量对原位合成钛基复合材料微观组织及力学性能的影响[J].稀有金属材料与工程, 2020, 49(2):398-403.
    [10] 来晓君,邱培坤,吕维洁,等.(TiB+La2O3)/IMI834钛基复合材料超塑性变形行为及显微组织演变[J].机械工程材料, 2020, 44(8):32-37.
    [11] TABRIZI G S, BABAKHANI A, SAJJADI S A, et al. Microstructural aspects of in situ TiB reinforced Ti-6Al-4V composite processed by spark plasma sinte-ring[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5):1460-1467.
    [12] YANG Z F, LU W J, QIN J N, et al. Microstructure and tensile properties of in situ synthesized (TiC+TiB+Nd2O3)/Ti-alloy composites at elevated temper-ature[J]. Materials Science and Engineering:A, 2006, 425(1-2):185-191.
    [13] 郭相龙.变形量对(TiB+La2O3)/Ti复合材料组织结构及力学性能影响的研究[D].上海:上海交通大学, 2013.
    [14] HUANG G F, WANG J H, WANG Q, et al. Microstructures and mechanical properties of hot indirect extruded in situ (TiB+TiC)/Ti-6Al-4V composites:effect of extrusion temperature[J]. Materials Science and Engineering:A, 2021, 811:140988.
    [15] WANG S, HUANG L J, ZHANG R, et al. Enhanc-ing ductility of titanium matrix composites by multimodal α-grains[J]. Scripta Materialia, 2019, 170:161-165.
    [16] KIM J S, LEE K M, CHO D H, et al. Fretting wear characteristics of titanium matrix composites reinforced by titanium boride and titanium carbide particulates[J]. Wear, 2013, 301(1-2):562-568.
    [17] AN Q, HUANG L J, JIANG S, et al. Wear rate of titanium matrix composite coating at high temperature further increased by non-stoichiometric TixC oxid-ation[J]. Ceramics International, 2020, 46(6):8068-8074.
    [18] CAO Z, LI J L, ZHANG H P, et al. Mechanical and tribological properties of graphene nanoplatelets-reinforced titanium composites fabricated by powder metallurgy[J]. Journal of Iron and Steel Research International, 2020, 27(11):1357-1362.
    [19] BARBOZAMJR, PEREZ E A C, MEDEIROS M M, et al. Creep behavior of Ti-6Al-4V and a comparison with titanium matrix composites[J]. Materials Science and Engineering:A, 2006, 428(1-2):319-326.
    [20] QI J Q, CHANG Y, HE Y Z, et al. Effect of Zr, Mo and TiC on microstructure and high-temperature tensile strength of cast titanium matrix composites[J]. Materials&Design, 2016, 99:421-426.
    [21] YANG J H, CHEN Y Y, XIAO S L, et al. High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite[J]. Materials Science and Engineering:A, 2020, 788:139516.
    [22] SELVAKUMAR M, RAMKUMAR T, CHANDRAS-EKAR P. Thermal characterization of titaniumtitanium boride composites[J]. Journal of Thermal Analysis and Calorimetry,2019, 136(1):419-424.
    [23] 吴焰,张洪梅,穆啸楠,等.轧制变形量对石墨烯/钛基复合材料组织及力学性能的影响[C]//特种粉末冶金及复合材料制备/加工学术会议.北京:中国有色金属学会, 2016.
    [24] 段宏强.原位合成层状结构钛基复合材料的制备方法与组织性能研究[D].上海:上海交通大学, 2016.
    [25] YANG J H, CHEN Y Y, XIAO S L, et al. High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite[J]. Materials Science and Engineering:A, 2020, 788:139516.
    [26] BRUN M, ANOSHKIN N, SHAKHANOVA G, et al. Physical processes and regimes of thermomechanical processing controlling development of regulated structure in the α+β titanium alloys[J]. Materials Science and Engineering:A, 1998, 243(1-2):77-81.
    [27] 项娟,韩远飞,乐建温,等.颗粒增强钛基复合材料大塑性变形组织演变与性能[J].稀有金属材料与工程, 2020, 49(3):901-906.
    [28] ZHANG B, ZHANG F M, SABA F, et al. Graphene-TiC hybrid reinforced titanium matrix composites with 3D network architecture:Fabrication, microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2021, 859:157777.
    [29] LU J W, DONG L L, LIU Y, et al. Simultaneously enhancing the strength and ductility in titanium matrix composites via discontinuous network structure[J]. Composites Part A:Applied Science and Manufacturing, 2020, 136:105971.
    [30] ZHANG J Y, KE W X, JI W, et al. Microstructure and properties of in situ titanium boride (TiB)/titanium (Ti) composites[J]. Materials Science and Engineering:A, 2015, 648:158-163.
    [31] HUANG L J, GENGA L, PENG H X, et al. High temperature tensile properties of in situ TiBw/Ti-6Al-4V composites with a novel network reinforcement architecture[J]. Materials Science and Engineering:A, 2012,534:688-692.
    [32] MUNIR K S, ZHENG Y F, ZHANG D L, et al. Improving the strengthening efficiency of carbon nano-tubes in titanium metal matrix composites[J]. Materials Science and Engineering:A, 2017, 696:10-25.
    [33] YANG W Z, HUANG W M, WANG Z F, et al. Thermal and mechanical properties of graphene-titanium composites synthesized by microwave sintering[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8):707-713.
    [34] HAYAT M D, SINGHA H, MIODOWSKIB A, et al. Fabrication, microstructure and mechanical properties of in situ formed particle reinforced titanium matrix composite[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92:105257.
    [35] LI S F, SUN B, IMAI H, et al. Powder metallurgy titanium metal matrix composites reinforced with carbon nanotubes and graphite[J]. Composites Part A:Applied Science and Manufacturing, 2013, 48:57-66.
    [36] GE Y X, ZHANG H M, CHENG X W, et al. Interface evolution and mechanical properties of nickel coated graphene nanoflakes/pure titanium matrix composites[J]. Journal of Alloys and Compounds, 2021, 853:157157.
    [37] MUNIR K S, LI Y, LIANG D, et al. Effect of dispersion method on the deterioration, interfacial interactions and re-agglomeration of carbon nanotubes in titanium metal matrix composites[J]. Materials&Design, 2015, 88:138-148.
    [38] 杨伟,张崇才,涂铭旌.钛及钛合金粉末注射成型研究近况及应用前景[J].材料导报, 2015, 29(9):123-128.
    [39] 王家惠,席健,史庆南.注射成形钛合金喂料装载量及流变特性研究[J].稀有金属材料与工程, 2012, 41(S2):827-830.
    [40] HUANG L J, GENG L, WANG B, et al. Effects of volume fraction on the microstructure and tensile properties of in situ TiBw/Ti-6Al-4V composites with novel network microstructure[J]. Materials&Design, 2013, 45:532-538.
    [41] 郑正.原位合成(TiC+TiB)/Ti基复合材料热力学及组织性能研究[D].镇江:江苏科技大学, 2017.
    [42] 冯海波. SPS原位TiB增强Ti基复合材料的组织结构与TiB生长机制[D].哈尔滨:哈尔滨工业大学, 2005
    [43] HU D, JOHNSON T P, LORETTO M H. Tensile Pr-operties of a Gas Atomised Ti-6Al-4V-TiC Com-posite[C]//Titanium'95 Science and Technology. 1995.
    [44] ZHANG E, WANG H W, ZENG S Y. Microstructure characteristics of in situ carbide reinforced titanium aluminide (Ti3Al) matrix composites[J]. 2001, 20(18):1733-1735.
    [45] ZHANG E L, JIN Y X, ZENG S Y, et al. Preparation and microstructure of as-cast in situ Ti-6Al/TiB composites[J].材料科学技术(英文版), 2001, 17(0z1):S159-S162.
    [46] ZHANG E L, ZENG S Y, WANG B, et al. Preparation and microstructure of in situ particle reinforced titanium matrix alloy[J]. Journal of Materials Processing Technology, 2002, 125-126:103-109.
    [47] 吕维洁,张荻,张小农,等.原位合成TiB/Ti复合材料的微观结构及力学性能[J].上海交通大学学报, 2000,34(12):1606-1609.
    [48] LU W J, ZHANG D, ZHANG X N, et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds, 2001, 327(1-2):248-252.
    [49] Zhang X N. Fabrication and mechanical properties of in-situ synthesized (TiB+TiC)/Ti-6242 metal matrix composites[J]. Journal of Advanced Materials, 2005, 37(1):11-15.
    [50] 吕维洁,杨志峰,张荻,等.原位合成(TiB+Al2O3)/Ti复合材料[J].铸造, 2002,51(5):277-279.
    [51] 耿珂,吕维洁,张荻,等.原位合成TiB和Nd2O3增强钛基复合材料[J].上海交通大学学报, 2004,38(2):300-303.
    [52] MERZHANOV A G, BOROVINSKAYA I P. A new class of combustion processes[J]. Combustion Science and Technology, 1975, 10(5-6):195-201.
    [53] YAMAMOTO T, OTSUKI A, ISHIHARA K, et al. Synthesis of near net shape high density TiB/Ti composite[J]. Materials Science and Engineering:A, 1997, 239-240:647-651.
    [54] ZHANG X H, XU Q, HAN J C. Self-propagating high temperature combustion synthesis of TiB/Ti composites[J]. Materials Science and Engineering:A, 2003, 348(1-2):41-46.
    [55] TRAXELK D, BANDYOPADHYAY A. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing[J]. Additive Manufacturing,2020, 31:101004.
    [56] YAN Q, CHEN B, LI J S, et al. et al. Super-high-strength graphene/titanium composites fabricated by selective laser melting[J]. Carbon, 2021,174:451-462.
    [57] WANG J D, LI L Q, TAN C W, et al. Microstructure and tensile properties of TiCp/Ti-6Al-4V titanium matrix composites manufactured by laser melting deposition[J]. Journal of Materials Processing Technology,2018, 252:524-536.
    [58] 刘守法,周兆锋.第二相增强金属基复合材料研究进展[J].热加工工艺, 2018, 47(4):14-16.
    [59] MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering:A, 2017, 687:164-174.
    [60] 曹洪川.石墨烯增强钛基复合材料的强塑性及摩擦磨损性能研究[D].贵阳:贵州大学, 2020.
    [61] CAO Z, WANG X D, LI J, et al. Reinforcement with graphene nano flakes in titanium matrix composites[J]. Journal of Alloys and Compounds, 2017, 696:498-502.
    [62] PAN D, ZHANG X, HOU X D, et al. TiB nano-whiskers reinforced titanium matrix composites with novel nano-reticulated microstructure and high performance via composite powder by selective laser melting[J]. Materials Science and Engineering:A, 2021, 799:140137.
    [63] OTTE J A, ZOU J, PATEL R, et al. TiB nanowhisker reinforced titanium matrix composite with improved hardness for biomedical applications[J]. Nanomaterials (Basel, Switzerland), 2020, 10(12):E2480.
    [64] WEI L X, LIU X Y, GAO Y Z, et al. Synergistic strengthening effect of titanium matrix composites reinforced by graphene oxide and carbon nanotubes[J]. Materials&Design, 2021, 197:109261.
    [65] HU Z, TONG G, NIAN Q, et al. Laser sintered single layer graphene oxide reinforced titanium matrix nanocomposites[J]. Composites Part B:Engineering, 2016, 93:352-359.
    [66] LIU J Q, HU N, LIU X Y, et al. Microstructure and mechanical properties of graphene oxide-reinforced titanium matrix composites synthesized by hot-pressed sintering[J]. Nanoscale Research Letters, 2019, 14:114.
    [67] HUANG L J, GENG L, PENG H X. Microstructurally inhomogeneous composites:is a homogeneous reinforcement distribution optimal?[J]. Progress in Materials Science, 2015, 71:93-168.
    [68] HUANG L, AN Q, GENG L, et al. Multiscale architecture and superior high-temperature performance of discontinuously reinforced titanium matrix composites[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(6):e2000688.
    [69] LIU C, HUANG L J, GENG L, et al. In situ synthesis of (TiC+Ti3 SiC2+Ti5 Si3)/Ti-6Al-4V composites with tailored two-scale architecture[J]. Advanced Engineering Materials, 2015, 17(7):933-941.
    [70] YANG J H, CHEN Y Y, XIAO S L, et al. High temperature tensile properties, deformation, and fracture behavior of a hybrid-reinforced titanium alloy composite[J]. Materials Science and Engineering:A, 2020, 788:139516.
    [71] IMAYEV V M, GAISIN R A, IMAYEV R M, et al. Microstructure and mechanical properties of near α titanium alloy based composites prepared in situ by casting and subjected to multiple hot forging[J]. Journal of Alloys and Compounds, 2018, 762:555-564.
    [72] WANG B, HUANG L J, HU H T, et al. Superior tensile strength and microstructure evolution of TiB whisker reinforced Ti60 composites with network architecture after β extrusion[J]. Materials Characterization, 2015, 103:140-149.
    [73] AN Q, HUANG L, JIANG S, et al. Microstructure evolution and mechanical properties of TIG cladded TiB reinforced composite coating on Ti-6Al-4V alloy[J]. Vacuum, 2017, 145:312-319.
    [74] KIM I Y, CHOI B J, KIM Y J, et al. Friction and wear behavior of titanium matrix (TiB+TiC) com-posites[J]. Wear, 2011, 271(9-10):1962-1965.
    [75] AN Q, HUANG L J, BAO Y, et al. Dry sliding wear characteristics of in situ TiBw/Ti-6Al-4V composites with different network parameters[J]. Tribology International, 2018, 121:252-259.
    [76] RITCHIERO, GILBERT C J, MCNANEY J M, et al. Mechanics and mechanisms of fatigue damage and crack growth in advanced materials[J]. International Journal of Solids and Structures, 2000, 37(1-2):311-329.
    [77] TAGAWA T, WADAHARA E, MIYALA T. Fatigue crack initiation and growth in titanium alloy matrix composite[J]. PubMed, 2012.
    [78] TJONG S C, MAI Y W. Processing-structure-property aspects of particulate-and whisker-reinforced titanium matrix composites[J]. Composites Science and Technology, 2008, 68(3-4):583-601.
    [79] WANG S, HUANG L J, GENGL, et al. Significantly enhanced creep resistance of low volume fraction in situ TiBw/Ti-6Al-4V composites by architectured network reinforcements[J]. Scientific Reports, 2017, 7:40823.
  • 加载中
计量
  • 文章访问数:  724
  • HTML全文浏览量:  12
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2023-03-11

目录

    /

    返回文章
    返回