HAN Feng, ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Test Study on Low Cycle Fatigue Surface Crack Propagation Rate for Pressure Vessel Steel[J]. Development and Application of Materials, 2011, 26(4): 56-59,89. DOI: 10.19515/j.cnki.1003-1545.2011.04.012
Citation: HAN Feng, ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Test Study on Low Cycle Fatigue Surface Crack Propagation Rate for Pressure Vessel Steel[J]. Development and Application of Materials, 2011, 26(4): 56-59,89. DOI: 10.19515/j.cnki.1003-1545.2011.04.012

Test Study on Low Cycle Fatigue Surface Crack Propagation Rate for Pressure Vessel Steel

More Information
  • Received Date: April 17, 2011
  • Available Online: March 27, 2024
  • Since surface crack propagation in pressure vessel often results in low cycle fatigue destruction,it is of significance to figure out low cycle fatigue surface crack propagation law.On the specimen with symmetrical double arcs,a semi-ellipse surface crack in the geometric center of the up-arc was machined and fatigue-prepared to simulate the character of pressure vessel with a surface crack.Simultaneously,in the arc side a knife-edge with a special shape and dimension for installing a COD displacement gage was designed to control the strain of surface crack front.With 10CrNiMo steel as an example,under cantilever bending loading mode,with a total six-grade strain range from small to big as the controlled parameters,the low cycle fatigue surface crack growth characteristics of the test material was investigated,which may provide a reference for assessing the remaining useful life of pressure vessels with surface cracks in it.
  • Related Articles

    [1]GAO Yuhao, WANG Jia, WU Zepeng, CHEN Pei, ZHAI Jianfei. Study on Crack Curvature Correction Method in Fatigue Crack Growth Rate Test[J]. Development and Application of Materials, 2023, 38(2): 10-15.
    [2]LI Chong, GONG Xuhui, WANG Renfu. Study on Fatigue Surface Crack Propagation of 10Ni5CrMoV Steel under Biaxial Bending Stress[J]. Development and Application of Materials, 2017, 32(3): 5-10. DOI: 10.19515/j.cnki.1003-1545.2017.03.002
    [3]ZHANG Yajun, DANG Hengyao. Some Problems Appeared in Fatigue and Fracture Test of Materials(2)[J]. Development and Application of Materials, 2017, 32(2): 1-6. DOI: 10.19515/j.cnki.1003-1545.2017.02.001
    [4]ZHANG Yajun. Some Problems Appeared in Fatigue and Fracture Test of Materials( 1)[J]. Development and Application of Materials, 2017, 32(1): 1-5. DOI: 10.19515/j.cnki.1003-1545.2017.01.001
    [5]WU Chunxue, ZHANG Yongfeng, REN Fangjie. Study on Fatigue Crack Growth Rate of High Pressure Vessel Steel[J]. Development and Application of Materials, 2016, 31(1): 27-29. DOI: 10.19515/j.cnki.1003-1545.2016.01.006
    [6]CONG Jian-chen, SUN Jun, NI Pei-xiang, WANG Lei, CI Wei-hong. Crack Study and Failure Criterion in Bending Fatigue Test of Crankshaft[J]. Development and Application of Materials, 2014, 29(6): 104-109. DOI: 10.19515/j.cnki.1003-1545.2014.06.021
    [7]ZHANG Ya-jun, ZHANG Li-juan. Study on Zigzag Path of Low Cycle Fatigue Surface Crack Propagation under Cantilever Bend Loading[J]. Development and Application of Materials, 2013, 28(3): 94-97. DOI: 10.19515/j.cnki.1003-1545.2013.03.021
    [8]ZHANG Ya-jun, WEI Ping-an, ZHANG Li-juan. Evolution Law of Parameters in Surface Crack Propagation Rate Test under Cantilever Bend Loading[J]. Development and Application of Materials, 2013, 28(2): 74-78. DOI: 10.19515/j.cnki.1003-1545.2013.02.017
    [9]ZHANG Ya-jun, ZHANG Li-juan. Influence of Residual Strain to Surface Crack Propagation Rate[J]. Development and Application of Materials, 2012, 27(5): 63-66. DOI: 10.19515/j.cnki.1003-1545.2012.05.017
    [10]ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Study on Surface Crack Propagation Characteristics of 800MPa Steel in Corrosion Circumstance under Cantilever Bend Loading[J]. Development and Application of Materials, 2012, 27(4): 4-6,12. DOI: 10.19515/j.cnki.1003-1545.2012.04.002

Catalog

    Article Metrics

    Article views (31) PDF downloads (1) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return