Citation: | HE Weiliang, XU Ting, LI Huafang, LI Xiaoyan. Numerical Simulation of Temperature Field of 6005A-T6 Aluminum Alloy Static Shoulder Friction Stir Welding Based on Adaptive Surface-Body Heat Source Model[J]. Development and Application of Materials, 2024, 39(3): 20-27. |
[1] |
刘琪,董仕节,官旭,等.搅拌摩擦焊温度场数值模型的研究进展[J].材料导报, 2015, 29(21):118-125.
|
[2] |
万胜强,吴运新,龚海,等. 2219铝合金搅拌摩擦焊温度与残余应力热力耦合模拟[J].热加工工艺, 2019, 48(13):159-163.
|
[3] |
裴瑜,高坤元,张小军,等.纯铝纯铁搅拌摩擦焊接头的组织与力学性能[J].金属热处理, 2023, 48(2):36-43.
|
[4] |
刘坡,郭国林,邱型宝,等.异种不锈钢搅拌摩擦焊接温度场数值模拟[J].电焊机, 2019, 49(7):89-94.
|
[5] |
孙慧杰,杨少红.铝合金T型接头焊接温度场热源模型研究[J].舰船电子工程, 2022, 42(5):164-169.
|
[6] |
李红涛,宋绪丁.不同热源模型对Q345中厚板焊接温度场的影响[J].热加工工艺, 2017,46(23):205-209.
|
[7] |
FARHANG M, SAM-DALIRI O, FARAHANI M, et al. Effect of friction stir welding parameters on the residual stress distribution of Al-2024-T6 alloy[J]. Journal of Mechanical Engineering and Sciences, 2021, 15(1):7684-7694.
|
[8] |
王淑慧,杨春苗,宋伟,等.预应变及时效处理对7A55铝合金残余应力及组织性能的影响[J].金属热处理, 2020, 45(10):44-48.
|
[9] |
LIANG W, MURAKAWA H, DENG D A. Investig-ation of welding residual stress distribution in a thick-plate joint with an emphasis on the features near weld end-start[J]. Materials&Design, 2015, 67:303-312.
|
[10] |
SUN T Z, ROY M J, STRONG D, et al. Comparison of residual stress distributions in conventional and stationary shoulder high-strength aluminum alloy friction stir welds[J]. Journal of Materials Processing Technology, 2017, 242:92-100.
|
[11] |
VICHARAPU B, LIU H, FUJII H, et al. Probing residual stresses in stationary shoulder friction stir welding process[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5):1573-1586.
|
[12] |
CHAO Y J, QI X H. Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6[J]. Journal of Materials Processing&Manufacturing Science, 1998, 7(2):215-233.
|
[13] |
汪建华,姚舜,魏良武,等.搅拌摩擦焊接的传热和力学计算模型[J].焊接学报, 2000, 21(4):61-64.
|
[14] |
GALLAIS C, DENQUIN A. Modelling the relationship between process parameters, microstructural evolutions and mechanical behaviour in a friction stir weld 6xxx aluminium alloy[C]//In Proceedings of the 5th International FSW Symposium, 2004:248-260.
|
[15] |
苗臣怀,曹丽杰,殷凯,等.铝合金-钢搅拌摩擦焊温度场数值研究[J].轻工机械, 2019, 37(6):82-87.
|
[16] |
JI S D, MENG X C, LIU J G, et al. Formation and mechanical properties of stationary shoulder friction stir welded 6005A-T6 aluminum alloy[J]. Materials&Design (1980-2015), 2014, 62:113-117.
|
[1] | ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8. |
[2] | ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Analysis on Application of Different Models for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(2): 88-92. |
[3] | GAO Yuhao, ZHAO Yang, CHENG Yingjin. Study on Analysis Method of da/dN-ΔK Curves Based on Probability Statistics Theory[J]. Development and Application of Materials, 2019, 34(6): 21-28. DOI: 10.19515/j.cnki.1003-1545.2019.06.005 |
[4] | FEI Qiqi, WANG Haoxuan, XIA Min, GUO Lin, ZHANG Tianhui. Effect of Loading Method on Fatigue Crack Propagation in ADB610 Steel[J]. Development and Application of Materials, 2019, 34(3): 108-112. DOI: 10.19515/j.cnki.1003-1545.2019.03.019 |
[5] | ZHANG Ya-jun, ZHANG Li-juan. Influence of Residual Strain to Surface Crack Propagation Rate[J]. Development and Application of Materials, 2012, 27(5): 63-66. DOI: 10.19515/j.cnki.1003-1545.2012.05.017 |
[6] | YANG Guang, XUE Gang, WANG Ren-fu, GONG Xu-hui. The Calculation of Plastic Component of CTOD Inconsideration of Crack Extension[J]. Development and Application of Materials, 2012, 27(2): 77-79. DOI: 10.19515/j.cnki.1003-1545.2012.02.018 |
[7] | HAN Feng, ZHANG Ya-jun, ZHANG Li-juan, GAO Ling-qing. Test Study on Low Cycle Fatigue Surface Crack Propagation Rate for Pressure Vessel Steel[J]. Development and Application of Materials, 2011, 26(4): 56-59,89. DOI: 10.19515/j.cnki.1003-1545.2011.04.012 |
[8] | YAO Hong-ying, LIU Xiang-ru. Model of Deformation Rolling Resistance of Steel 195 for Lower Temperature Rolling[J]. Development and Application of Materials, 2009, 24(1): 36-38. DOI: 10.19515/j.cnki.1003-1545.2009.01.011 |
[9] | Qian Weiping, Li Gang, Ma Jianpo. Fracture Resistance of 14MnNbq Steel and Its Weldment[J]. Development and Application of Materials, 2000, 15(3): 33-36. DOI: 10.19515/j.cnki.1003-1545.2000.03.012 |
[10] | Yuan Jingsong. Approximate Calculation of Crack Propagation Rate of Metal Corrosion Fatigue[J]. Development and Application of Materials, 2000, 15(2): 26-29. DOI: 10.19515/j.cnki.1003-1545.2000.02.007 |