LU Qiaoying. Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity[J]. Development and Application of Materials, 2021, 36(2): 1-10.
Citation: LU Qiaoying. Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity[J]. Development and Application of Materials, 2021, 36(2): 1-10.

Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity

More Information
  • Received Date: July 12, 2020
  • The heat transfer effect of nanofluid in thermal marangoni convection was studied by using lattice Boltzmann method. The effects of nanoparticle volume fraction, particle shape and marangoni number(Ma) were analyzed. As a result, the heat transfer effect of nanofluids was affected by the ratio of length to radius. The larger the shape factor, the larger the average Nu number. As the volume fraction increased, cylinder, platelet, and brick nanoparticles all could reduce the average Nu number of thermal marangoni convection and spherical nanoparticles could increase the average Nu number. Besides, the larger Ma was, the larger the free surface velocity of the thermal marangoni convection of nanofluids was, and the convection heat transfer effect could also be enhanced.
  • [1]
    HWANG K S,HA H J,LEE S H,et al.Flow and convective heat transfer characteristics of nanofluids with various shapes of alumina nanoparticles[C].Florida:The Asme Second International Conference on Micro/nanoscale Heat& Mass Transfer,2009.
    [2]
    JEONG J,LI C,KWON Y,et al.Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids[J].International Journal of Refrigeration,2013,36(8):2233-2241.
    [3]
    TIMOFEEVA E V,ROUTBORT J L,SINGH D.Particle shape effects on thermophysical properties of alumina nanofluids[J].Journal of Applied Physics,2009,106(1):14304.
    [4]
    蔡洋,刘方,朱威全.纳米颗粒形状对螺旋管强化传热的影响[J].上海电力学院学报,2018,34(2):127-134,140.
    [5]
    田海栋,刘方,张冬翔,等.弯管内纳米流体非线性特性模拟与分析[J].上海电力学院学报,2018,34(2):135-140.
    [6]
    AMINFAR H,MOHAMMADPOURFARD M,MOHSENI F.Numerical investigation of thermocapillary and buoyancy driven convection of nanofluids in a floating zone[J].International Journal of Mechanical Sciences,2012,65(1):147-156.
    [7]
    LIN Y,LI B,ZHENG L,et al.Particle shape and radiation effects on Marangoni boundary layer flow and heat transfer of copper-water nanofluid driven by an exponential temperature[J].Powder Technology,2016,30(1):379-386.
    [8]
    HAYAT T,KHAN M I,FAROOQ M,et al.Impact of Marangoni convection in the flow of carbon-water nanofluid with thermal radiation[J].International Journal of Heat and Mass Transfer,2017,10(6):810-815.
    [9]
    MAHANTHESH B,GIREESHA B J,PRASANNAKUMARA B C,et al.Marangoni convection radiative flow of dusty nanoliquid with exponential space dependent heat source[J].Nuclear Engineering and Technology,2017,49(8):1660-1668.
    [10]
    MAHANTHESH B,GIREESHA B,PRASANNAKUMARA B,et al.Magneto-Thermo-Marangoni convective flow of Cu-H2O nanoliquid past an infinite disk with particle shape and exponential space based heat source effects[J].Results in physics,2017,7(2):990-996.
    [11]
    KOLSI L,LAJNEF E,AICH W,et al.Numerical investigation of combined buoyancy-thermocapillary convection and entropy generation in 3D cavity filled with Al2O3 nanofluid[J].Alexandria Engineering Journal,2017,56(1):71-79.
    [12]
    GUO Z,ZHAO T.Lattice Boltzmann model for incompressible flows through porous media[J].Physical Review E,2002,66(3):36304.
    [13]
    SRINIVASAN S,MILLER R,MAROTTA E.Parallel computation of the Boltzmann transport equation for microscale heat transfer in multilayered thin films[J].Numerical Heat Transfer,Part B:Fundamentals,2004,46(1):31-58.
    [14]
    DIXIT H,BABU V.Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method[J].International Journal of Heat and Mass Transfer,2006,49(3-4):727-739.
    [15]
    谢驰宇,张建影,王沫然.多相非牛顿流体驱替过程的格子Boltzmann模拟[J].计算物理,2016,33(2):147-155.
    [16]
    王婷婷,高强,陈建,等.多孔介质方腔内混合对流格子Boltzmann模拟[J].计算物理,2017,34(1):39-46.
    [17]
    KHANAFER K,VAFAI K,LIGHTSTONE M.Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids[J].International Journal of Heat and Mass Transfer,2003,46(19):3639-3653.
    [18]
    HAMILTON R L,CROSSER O K.Thermal conductivity of heterogeneous two-component systems[J].Industrial& Engineering Chemistry Fundamentals,1962,1(3):187-191.
    [19]
    ELLAHI R,ZEESHAN A,HASSAN M.Particle shape effects on Marangoni convection boundary layer flow of a nanofluid[J].International Journal of Numerical Methods for Heat& Fluid Flow,2016,26(7):2160-2174.
    [20]
    刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [21]
    ZHU D S,WU S Y,WANG N.Surface tension and viscosity of aluminum oxide nanofluids[J].International Journal of Numerical Methods for Heat& Fluid Flow,2010.
    [22]
    CHEN S,DOOLEN G D.Lattice boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):329-364.
    [23]
    QIAN Y H,D'HUMIèRES D,LALLEMAND P.Lattice BGK models for navier-stokes equation[J].Europhysics Letters,1992,17(6):479.
    [24]
    SHI B,GUO Z.Thermal lattice BGK simulation of turbulent natural convection due to internal heat generation[J].International Journal of Modern Physics B,2003,17(1-2):173-177.
    [25]
    GUO Z,ZHENG C,SHI B.An extrapolation method for boundary conditions in lattice boltzmann method[J].Physics of Fluids,2002,14(6):2007-2010.
    [26]
    GAO Z L,ZHAO C G,SUN B C.Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[J].Chinese Physics,2002,11(4):366.
    [27]
    CARPENTER B M,HOMSY G M.High Marangoni number convection in a square cavity:Part II[J].Physics of Fluids,1998,2(12):3467-3476.
  • Related Articles

    [1]YANG Sanqiang, WANG Lei, LI Maowei, GAO Zhanjiao, HAN Jianchao, QI Junfeng. Study on Residual Stress Relief and Shape Accuracy Retention of Titanium Alloy Parts[J]. Development and Application of Materials, 2024, 39(4): 76-82.
    [2]XUE Gang. Mathematical Model of the Specimen Shape During the Necking Stage in the Uniaxial Tensile Test[J]. Development and Application of Materials, 2023, 38(3): 1-11,16.
    [3]WANG Han, SHI Bo-wen, NIU Jian-min, LIU Ji-li. Study on Superelastic Anisotropy Parameters and Numerical Calculation of Columnar-grained Cu-Al-Mn Shape Memory Alloy[J]. Development and Application of Materials, 2022, 37(2): 1-9.
    [4]GE Zichao. Numerical Simulation of Flow and Heat Transfer Characteristics of Cu-H2O Nanofluids in Microchannel[J]. Development and Application of Materials, 2020, 35(5): 18-26.
    [5]ZHOU Qiang, XIE Chun-sheng. Effect of Alloy Elements on the Microstructures and Hardness in Cu-Al-Mn-Ti Shape Memory Alloys[J]. Development and Application of Materials, 2009, 24(1): 16-18,23. DOI: 10.19515/j.cnki.1003-1545.2009.01.005
    [6]WANG Chun-fen, HUANG Ning-kang, ZHANG Hai-feng, ZHANG Yong-hui. Formation of Sub-μm Particles in the CuCl+ Implanted α-Al2O3 Crystal after Annealing[J]. Development and Application of Materials, 2008, 23(6): 4-6. DOI: 10.19515/j.cnki.1003-1545.2008.06.002
    [7]ZHAO Ke-xin, YANG Yong-min. Application of Shape Memory Alloy in Building Engineering[J]. Development and Application of Materials, 2007, 22(3): 40-46. DOI: 10.19515/j.cnki.1003-1545.2007.03.011
    [8]XIE Qing-feng, LI Hao, GAO Yan. Influence of Heat Treatment on Phase Transformation of NiTi Shape Memory Alloys[J]. Development and Application of Materials, 2007, 22(2): 5-7. DOI: 10.19515/j.cnki.1003-1545.2007.02.002
    [9]WANG Xin-kun, WANG Ding-jiang, CHEN Ming-hua. Application of Particles Scattering Technology in Cf/Al Composites[J]. Development and Application of Materials, 2005, 20(4): 29-33. DOI: 10.19515/j.cnki.1003-1545.2005.04.009
    [10]Lei Zhufang. Fe-based Shape-memory Alloy and its Applications[J]. Development and Application of Materials, 2000, 15(2): 40-45. DOI: 10.19515/j.cnki.1003-1545.2000.02.010
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (315) PDF downloads (16) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return