LU Qiaoying. Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity[J]. Development and Application of Materials, 2021, 36(2): 1-10.
Citation: LU Qiaoying. Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity[J]. Development and Application of Materials, 2021, 36(2): 1-10.

Lattice Boltzmann Simulation of Thermal Marangoni Convection of Al2O3-H2O Nanofluids in Square Cavity

  • The heat transfer effect of nanofluid in thermal marangoni convection was studied by using lattice Boltzmann method. The effects of nanoparticle volume fraction, particle shape and marangoni number(Ma) were analyzed. As a result, the heat transfer effect of nanofluids was affected by the ratio of length to radius. The larger the shape factor, the larger the average Nu number. As the volume fraction increased, cylinder, platelet, and brick nanoparticles all could reduce the average Nu number of thermal marangoni convection and spherical nanoparticles could increase the average Nu number. Besides, the larger Ma was, the larger the free surface velocity of the thermal marangoni convection of nanofluids was, and the convection heat transfer effect could also be enhanced.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return