Volume 36 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8.
Citation: ZHANG Yajun, ZHANG Xinyao, ZHANG Yunhao. Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials[J]. Development and Application of Materials, 2021, 36(4): 1-8.

Pertinence of Material Constants in Paris Model for Fatigue Crack Propagation Rate of Metallic Materials

  • Received Date: 2020-05-20
  • Publish Date: 2021-08-25
  • Fatigue crack propagation rate of metallic materials is an important index of mechanical property, which is employed for damage tolerance design and fatigue life assessment in engineering application. Paris model is the most popular expression for fatigue crack propagation rate, and the relation of fatigue crack propagation rate and stress intensity factor range at the crack front is believed to meet a power-function rule in the model. The model involves in two material constants of C and m. In this paper, based on some test data published in some literatures, the relationships between material constants of C and m in Paris model for fatigue crack propagation rate of metallic materials of alloy steels, copper alloy, titanium alloy and aluminum alloy were analyzed. The results indicated that the constants of C and m of different types of metallic materials satisfied good linear relationship, namely m=alnC+b, which was not affected by specimen sampling orientation, weld position, and test environment. Stress ratios had great influence on the linear relationship, especially when the stress ratio value was negative. The slopes of the linear models for different metallic materials were not equivalent and the influencing factors should be further researched systematically. The analyzing results would provide reference for fatigue design and application in engineering.

     

  • loading
  • [1]
    庄力健,高增梁,王效贵,等.16MnR钢在不同应力比下的疲劳裂纹扩展的试验研究及模拟[J].压力容器,2007,24(3):1-7.
    [2]
    熊缨,陈冰冰,郑三龙,等.16MnR钢在不同条件下的疲劳裂纹扩展规律[J].金属学报,2009,45(7):849-855.
    [3]
    束德林,编.工程材料力学性能[M].北京:机械工业出版社,2008:104-109.
    [4]
    殷之平,编.结构疲劳与断裂[M].西安:西北工业大学出版社,2012:82-83.
    [5]
    石德珂,金志浩,编.材料的力学性能[M].西安:西安交通大学出版社,2005:125-131.
    [6]
    倪向贵,李新亮,王秀喜.疲劳裂纹扩展规律Paris公式的一般修正及应用[J].压力容器,2006,23(12):8-15.
    [7]
    PARIS P,ERDOGAN F.A critical analysis of crack propagation laws[J].J.Basic.Eng.1963,85(4):528-534.
    [8]
    董达善,梅潇.Q235材料的Paris常数C、m及△Kth值测试[J].机械强度,2003,25(2):215-218.
    [9]
    盛伟,刘天琦,马少俊,等.不同条件下300M钢的疲劳裂纹扩展行为[J].机械工程材料,2017,41(6):17-24.
    [10]
    张亚军,李永军,梁健,等.螺旋桨用铜合金ZCuAl8Mn14Fe3Ni2的疲劳裂纹扩展特性[J].材料开发与应用,2010,25(5):1-3.
    [11]
    文磊磊,周昌玉,李建,等.TA2钛合金焊接接头不同区域的疲劳裂纹扩展速率[J].机械工程材料,2017,41(11):39-44.
    [12]
    吴学仁,编.飞机结构金属材料力学性能手册第3卷腐蚀疲劳[M].北京:航空工业出版社,1996:230-258.
    [13]
    YOKOBORI T,AIZAWA T.The influence of temperature and stress intensity factor upon the striation spacing and fatigue crack propagation rate of aluminum alloy[J].International Journal of Fracture,1973,9(4):489-491.
    [14]
    BATHIAS C,PINEAU A,著.材料与结构的疲劳[M].吴圣川,李源,王清远,译.北京:国防工业出版社,2016:146-147.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(10)

    Article Metrics

    Article views (661) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return